
MalwareVis: Entity-based Visualization of Malware
Network Traces

Wei Zhuo Yacin Nadji
Graphics, Visualization and Usability Center

Colleage of Computing
Georgia Institute of Technology

wzhuo3, yacin@cc.gatech.edu

ABSTRACT
This paper presents MalwareVis, a utility that provides se-
curity researchers a method to browse, filter, view and com-
pare malware network traces as entities.

Specifically, we propose a cell-like visualization model to
view the network traces of a malware sample’s execution.
This model is a intuitive representation of the heterogeneous
attributes (protocol, host ip, transmission size, packet num-
ber, duration) of a list of network streams associated with
a malware instance. We encode these features into colors
and basic geometric properties of common shapes. The list
of streams is organized circularly in a clock-wise fashion to
form an entity. Our design takes into account of the sparse
and skew nature of these attributes’ distributions and pro-
poses mapping and layout strategies to allow a clear global
view of a malware sample’s behaviors.

We demonstrate MalwareVis on a real-world corpus of
malware samples and display their individual activity pat-
terns. We show that it is a simple to use utility that provides
intriguing visual representations that facilitate user interac-
tion to perform security analysis.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: User
Interfaces; C.2.0 [Computer-Communication Networks]:
General—Security and Protection; I.3.8 [Computer Graph-
ics]: Applications

General Terms
Visualization, Security

Keywords
Malware Analysis, Network Behavior Visualization

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VizSec ’12, Seattle, WA, USA
Copyright 2012 ACM 978-1-4503-1413-8/12/10 ...$15.00.

Malware remains at the forefront of most security threats
on the Internet. Nearly every existing malware instance re-
lies on network communication to facilitate its attacks, such
as communicating with its command and control (C&C)
server, sending spam emails or operating in a fast-flux ser-
vice network. Therefore, network traces are commonly used
to characterize a malware sample’s behavior. As an essen-
tial technology that combats illegal income for the attackers,
malware analysis has been playing a crucial role in supplying
signatures for detection systems.

There is a growing need for visual presentations in the
workplace of malware analysis: new instances of“in the wild”
malware samples are collected daily. In a typical analysis
scenario, each malware instance is run in a controlled envi-
ronment where its host-level and network-level activities are
captured as host and network traces. In order to keep track
of each sample, security researchers maintain large databases
of network traces. Due to their sheer size, it is a daunting
task to look into the details of each sample.

Current malware analysis approaches pose several chal-
lenges to the analytic process itself which complicate visual-
ization design. First, network traces often contain large vol-
umes of information (for example, network traffic generated
by the operating system). Having to visualize everything
in a single view not only complicates the design, but also
causes confusion to the analysts. Here we focus on DNS
and TCP channels for illustrating Malware samples using
these protocols to perform their malicious behavior. To re-
duce clutter, we do not visualize less common protocols by
default. Second, the analyst can easily lose the big picture
of malware activities by focusing on individual packets. To
handle this, we aggregate packets into streams separated by
protocol. Specifically, we focus on DNS and TCP streams as
they are often used by malware for communication. Third,
streams can vary drastically in packet size and these uneven
distributions present themselves in nearly every attribute
space (e.g. total size of transmission, starting time, dura-
tion). Linearly mapping these attributes not only consumes
screen real-estate, but also draws the viewer’s attention away
from those small but potentially important streams. Lastly,
showing all relevant attributes in a single, clear view requires
an original design. In the absence of an intuitive presenta-
tion of sets of network traces, malware behavior analysis will
remain tedious.

The goal of this paper is to present a visualization system
and a model design that address the above challenges. Our
work claims the following contributions:

• Data collection and preprocessing. The malware

Figure 1: We illustrate our mapping scheme with a simple network packet traces generated by mal-
ware (036cc2e0): there are three streams of packets (as highlighted by rectangles in the flow records produced
by Wireshark [4]) are mapped to three cilia in the cell view on the right. The user can select a cilium for
detailed information about the stream.

network traces were captured by packet sniffer software
in a controlled environment. The preprocessing con-
sists of two steps: pruning and bundling. The raw net-
work data are pruned by preserving protocols known
to be used commonly by malware seen in the wild be
default. Other protocols can be viewed if an analyst
wishes to do so. Then we bundle the packets accord-
ing to their protocols and hosts so that each stream of
communication is semantically clear.

• Interface and visualization metaphor. We de-
sign an intuitive view, the cell view, to represent a
set of streams generated by any malware instance. A
cell view consists of a circular timeline, a disk panel
to display details-on-demand, and a set of cilia ori-
ented clockwise along the timeline to represent the set
of streams. This metaphorical structure allows the
viewer to select and compare among streams as well
as between malware instances.

• Mapping and layout techniques for sparsely dis-
tributed attributes. As explained earlier, the ma-
jority of the communication (in terms of the number of
packets, transmission size) takes place within a small
percentage of streams. Also, many streams may oc-
cur within a short period of time. To cope with these
uneven distributions, we use geometric sequences and
inverse logarithms to map discrete or continuous at-
tribute values. We also present a recursive angle map-
ping algorithm that helps produce equalized layout for
viewing streams that are cluttered over time.

This paper is organized as follows. Section 2 introduces
several related security visualization systems. Section 3 presents
an expository account of malware analysis infrastructure for
the benefit of readers who are not familiar with the tech-
nique. We then introduce our design and implementation in
Section4. We apply the visualization model to a corpus of
real-world malware samples and Section 5 introduces user
interaction scenarios with different components of Malware-
Vis. Finally, Section 6 discusses and reflects on the project
process; Section 7 concludes the paper.

2. PRIOR ART
Most of the related network visualization systems so far

has been traffic-centric with explicit focuses on each record
of flows. For example, the work of McPherson and Ma [15]
presents PortVis, which visualizes large network flow data
collected at an Internet gateway. Their system allows in-
teractive timeline filtering and histogram summarization on
port activities. NVisionIP [13], introduced by Lakkaraju
and his colleagues, focuses on the static visual representa-
tion of the IP network traffic in a 2D scatter plot named
galaxy view. The other two views (the small multiple view
and the machine view) complement the main view by pro-
viding bar charts of various flow counts. TNV by Goodall et
al. [10] aims to visualize the source, destination and the time
attributes in a single view. To allow the user to explore the
area of interest in greater detail, TNV can zoom in on traf-
fic through bifocal display techniques. Rumint [5] is another
full-fledged, time-oriented network traffic analyzer that cap-
tures live traffic and supports playing back the traffic.

Apart from scatter plots histograms and bar charts, linked
graphs have become popular representations for network
flows. Based on force-directed graph layout techniques, Af-
terglow [14] is a collection of utilities for generalized com-
munication network visualization. Recently, Blue and his
colleagues presented NetGrok [2] that consists of graph and
treemap views. In their graph view, the IP layer commu-
nications with the local host are visualized as a star net-
work with other hosts organized around based on their IP
addresses. Although using graphs for security visualization
has increased in popularity, it is unclear to the authors how
to incorporate the time-series nature of network flow data
into graphs without using a complementary view.

Compared to previous traffic-centric visualization systems,
the major innovation and advantage of MalwareVis lies in
its entity-based design. The idea is to visualize the network
traces associated with each malware instance as a whole. It
is natural to represent the overall flow associated with each
sample as one model for the purpose of identifying poten-
tially interesting patterns. For example, Quist and Liebrock
visualize the compiled executables by monitoring malicious
program execution [17]. While our work focus on malware

Figure 2: The overview of our malware visual ana-
lytic system. The user-end view and interaction rely
on three primary modules: data collection, prepro-
cessing and visualization.

network traces, the purpose is similar—to allow the analysts
to identify particular patterns of network traffic. Based on
this idea, we design a intuitive visualization model, the cell
view, to present behaviors of malware network communica-
tions.

In the scope of visualizing large volumes of NetFlow data,
Fischer et al.[8] presents a visual analytics system for mon-
itoring and visualizing large networks using TreeMap; Flo-
Vis [18] presents a suite of visualization tools that display
various aspects of multiple individual host behaviors as color-
coded time series and show the interactions among hosts and
groups of hosts.

3. SYSTEM OVERVIEW
We show an overview of our malware visual analytic sys-

tem in Figure 2, and discuss how malware network data
are captured, processed and visualized in this section. This
process consists of three primary steps: data collection, pre-
processing, and visualization.

Data sources. First, we gather a corpus of malware sam-
ples to use for evaluation purposes. 200 MD5 unique mal-
ware samples were randomly selected from malware collected
during April 2011. We use multiple sources that provide ap-
proximately 6,000 MD5 distinct samples per day taken from
low interaction honeypots, web crawlers, spam email filters,
and user submissions. We restrict our test set to only mal-
ware samples that exhibit network behavior during execu-
tion. We analyze the malicious binaries by executing them
for three minutes in a virtualized dynamic malware analysis
system that runs malware samples in kvm [12] and records
all the network traffic into packet traces as pcap files1. Our
visualization system is not dependent on any particular dy-
namic analysis system and similar systems described in the
literature could serve as drop-in replacements ([1] [6]), Pre-
cautions were taken to prevent the executing malware from
acting maliciously; specifically, we redirect SMTP traffic to
a spam trap, blocked connections to ports commonly used
by exploits and blocked traffic to other local machines.

Preprocessing. Next, we parse pcap files into a set of ap-

1http://www.tcpdump.org

propriately formatted documents which we refer to as mal-
ware entities. Each entity is of the form
<Digest D | ArrayList<Stream> S>

The structure Digest consists of a sample’s MD5, the total
number of packets, the total size of transmission, the total
number of streams, and the packet trace’s duration. The list
of streams are extracted from the protocol information in the
pcap file. Specifically, each stream includes attributes such
as host (IP or domain name), protocol (DNS or TCP), num-
ber of packets (n), size of transmission (z), offset from the
initial start time (s), duration (t), and whether the stream
ended successfully or not. A DNS stream is defined as a DNS
request and its corresponding response and a TCP stream
begins with a 3-way TCP handshake and concludes with
successful or unsuccessful termination.

Visualization. The visualization module generates table
views and cell views. Given a set of parsed and preprocess-
ing entities, the user browses the table of digests and selects
one or more targets for analysis. Then, the application gen-
erates a stream table and a cell view for each selected entity.
Our attributes mapping and layout algorithms run in real-
time for most of the malware entities supplied. In a typical
visual analysis scenario, the user interacts with the cell view
by selecting a ‘cilium’ that represents a stream of interest.
Details of the stream, such as its host IP and country code,
are displayed at the disk panel located at the center of the
cell view. The user can adjust the layout parameters for the
circular timeline interactively so as to improve the clarity of
the set of cilia (Sec. 4.3).

4. CELL VIEW IMPLEMENTATION
This section presents our design of the cell view. We first

introduce different components of a cell view and their im-
plementations in Sec. 4.1. Then we present in Sec. 4.2 the
detailed mapping schemes that encode the various attributes
to properties of simple geometric shapes. In Sec. 4.3 we
present a layout algorithm inspired from fast tone-mapping
technique to avoid cluttered drawing on the timeline.

4.1 Components
A cell view has three basic components: a timeline, a disk

panel and a set of cilia.
Timeline. The time line is an directional open curve

joined by an circular arc and a quadratic Bezier curve. The
arc is of radius R, centered on screen and spanning an angle
from δ to 2π− δ, where δ is set to a small positive value (π

12
in our work) to differentiate the starting point from the end
point. The control points of the Bezier curve are specified by
δ and R in order to let the curve joins the arc with tangent
continuity.

The use of circular timeline is not new (e.g. [3]) and is
commonly appeared as a model in geology and news data
visualization for presenting events that are evolving or pe-
riodic in nature. Here the motivation is to view malware
network traces as an entity. We believe that using a circular
timeline instead of a straight timeline better promotes this
impression.

Disk Panel. The circular timeline delimits a round area
which is used to display the primary key of the malware
instance or details of a user-selected stream. In the viewing
mode, the unique MD5 value is shown on the disk panel. In
the interaction mode, the disk panel display attribute values
of the user-selected stream. It is possible to show the details

Figure 3: We show the cell views generated by MalewareVis for 4 maleware instances. From left to right,
the views each represent 5661, 313, 3527, 1043 records in their corresponding pcap files. We annotate on the
first view (the detailed mapping scheme is explained in Sec. 4); the second view and the fourth view show
similar behaviors in terms of communication patterns. Different behaviors associated with different samples
are intuitive to see.

of a stream near the cilium representing this stream, or in
another pop-up panel; nevertheless, using the disk panel is
a more economical choice in terms of minimizing the total
screen space necessary for the view.

Cilium. Each cilium represents a stream of network com-
munications. A cilium has a stem and a head. The stem of
the cilium is a quad strip. Each quad represent a packet and
hence the longer the stem the larger is the number of packets
being transmitted. The width of the stem is correlated with
the duration of the stream. The head of the cilium is a ellipse
whose width encodes the size of transmission. Note that in
a real-world scenario, the number of packets, duration and
size are highly correlated with each other. Hence, the width
of a cilium’s head commonly scales with the length of its
stem. Outliers, such as a ’short’ cilium with a ’wide’ head
or a ’tall’ cilium with a ’slender’ stem , might be indicative
of interesting behavior.

Drawing. All geometric dimensions (timeline radius, cil-
ium height, width, etc.) are relative to the screen size, hence
the cell view can scale without loss of quality. Each cilium
object is associated with a drawing function (drawCilium())
that display the cilium with transparency in the local coor-
dinate system. The transformation matrix stack is used to
draw a cilium in the global coordinate system.

4.2 Attribute Mapping
As expressed earlier, we use nonlinear mapping functions

to transfer attribute values to geometric properties since
linear mapping may require unbounded area. The design
guideline of each mapping function is to limit each geomet-
ric dimension to be within a lower bound and a upper bound
and is a monotonically increasing function of the input at-
tribute value.

Mapping number of packets n to cilium stem height h:
The stem of the cilium is a quad strip where each quad de-
notes a packet. The cilium height h is the sum of the set of
quad heights {hi}, which forms a geometric sequence with
r as the scale factor:

r =
hmax − hmin

hmax

For example, if a stream has n packets, the height of its stem

is

h = h(n) =

n∑
i=1

hi = hmax(1− rn) (1)

Hence, h is bounded by hmin and hmax, and h(n) is mono-
tonically increasing in n.

Mapping duration t to cilium stem width w: The
width w of the stem is mapped from the duration t of the
stream by the following transfer function

w = w(t) = wmax −
wmax − wmin

t+ 1
(2)

This would limit the width of the stem to wmax and w(t) is
a increasing function of t.

Mapping size of transmission z to cilium head width w:
Similarly, the width l of the oval head of the stem is com-
puted from the size of the stream, denoted by z:

l = l(z) = lmax −
lmax − lmin
log(z)

(3)

As the sizes of transmission of different streams can be dras-
tically different (ranges from 102 to 106 bytes), we use log-
arithm of z in the mapping function.

4.3 Layout on Timeline
To strengthen the visualization as a cell entity, we clock-

wisely oriented the set of streams around the circular time-
line. Each stream has a starting time which we denote as
si, and the position it appears on the circular timeline is de-
termined by its contacting angle ai. The relative order and
the intermissions of a set of streams are important charac-
teristics of a malware instance’s behavior.

Therefore, given a set of starting times {si}, i = 1, ..., k,
we want to compute a set of angles {ai} bounded by the
mappable range [δ, 2π − δ]. Assume that {si} is sorted. s1
is the smallest and mapped to δ and sk is the largest and
mapped to 2π − δ. As mentioned earlier, the distribution
of {si} is very uneven because multiple streams of commu-
nications may occur in a very short time period. Hence,
linearly mapping {si} to the mappable range may lead to
overlappings and visual clutter, as shown in Fig. 4.3 left. In
order to improve clarity while preserving the relative order

as they appear in {si}, we present a recursive range map-
ping algorithm in Alg. 1. This algorithm is inspired by fast
tone reproduction techniques for visualizing high dynamic
range image data [7] based on the fact that the distribution
of HDR data tends to be sparse. Here, the set of starting
times {si} is analogous to the raw HDR image data and the
mappable range ([δ, 2π− δ]) is analogous to the viewable in-
tensity range ([0, 255]) in the tone-mapped image. The idea
of fast tone-mapping is to scale the mapping range according
to the input data histogram: the time period that contains
more incidences of streams is mapped to a larger range.

Algorithm Tuning. Specifically, α ∈ [0, 1] is the param-
eter that specifies the scaling effect: the larger α is, the more
equalized the mapping is. If α = 0, Alg. 1 is essentially a
linear mapping, which causes visual clutter due to that mul-
tiple streams typically start together. If α = 1, Alg. 1 is
the equalized mapping where the streams appear uniformly
spaced. However, the equalized mapping does not show in-
termissions, such as a long period of inactivity after the first
DNS stream in Fig. 4.3 right.

Alg. 1 Recursive range mapping: map(i, j, amin, amax)

Input: subarray indices i, j of input array s,
mapping range [amin, amax]

Result: set angles in output array a
amean ⇐ amin+amax

2
if i ≥ j then
ai ⇐ amean
return

end if
smean ⇐ si+sj

2
,

smedian ⇐ s(i+j)/2
cut⇐ αsmedian + (1− α)smean
ci⇐ index of cut in array s
if ci == i then
ai ⇐ amin
map(ci+ 1, j, amean, amax)
return

end if
if ci == j then
aj ⇐ amax
map(i, ci− 1, amin, amean)
return

end if
map(i, ci− 1, amin, amean)
map(ci, j, amean, amax)

5. USER INTERACTION
In this section, we present the user interface of Malware-

Vis.
To start, the user can select a set of pcap files (typically

a corpus of malware network traces) and MalwareVis parses
them into a collection of entities (Fig. 2). Parsing and
preprocessing takes approximately 30 seconds for 95 pcap
files (average file size 722KB). In addition to reading raw
pcap files, the user can select a set of previously saved enti-
ties for quickly initiating the application.

Table View: As shown in Fig. 5, the program then
generates table views. The pcap table displays the entity di-
gests, each of which is a summary of a list of communication
sessions recorded by a pcap file. The user can browse the

list of entities and search or filter them based on MD5 values
and duration. The lower part of the table view is the stream
table that list a set of streams of a user-selected entity.

Single Cell View: After the user select a entity, she
can create a cell view of the entity by clicking the “single”
button in the cell view control panel. A cell view appears
in a very small fraction of a second. In the cell view, the
user can interact with a string of cilia: the user can select a
cilium by clicking the oval head of the cilium. Then the disk
panel shows the detailed stream information represented by
this cilium. It also queries a GeoIP database to identify the
country name and flag of the host IP if it is a routable IP
address. The user can also select from the stream table and
its corresponding stream and cilium are highlighted in both
views.

Timeline: The user can change the value of α in the
timeline mapping algorithm (Alg. 1) from the slider in the
cell view control panel. Notice that when sliding, the cell
view redraws the set of cilia at each frame. This creates
intermediate frames between the two views of different α
values (Fig. 4.3). Therefore, the user can view the layout
equalization processing on the timeline as a animation.

Multiple Cell Views: The user can also select multiple
malware entities. Then, stacked cell views of a list of the se-
lected entities can be created by clicking the “multiple” but-
ton in the cell view control panel. The user can compare the
visual representations of multiple malware samples (Fig. 3)
and interact with each view as one would interact with a
single cell view.

6. REFLECTION AND DISCUSSION
This section discusses the project collaboration process,

the feedbacks and ideas for potential future work.
Collaboration. This project has involved close collabo-

ration between students at the graphics&visualization and
the information security centers. Initially, the visualization
design and the data collection processes were conducted sep-
arately. However, to build a visualization model that ad-
dresses both utility and aesthetic concerns requires close
collaboration among participants. Hence in the develop-
ment phase, participants met and discussed issues with data
processing, visualization and user interaction on a regular
basis. Convenient design and collaboration was made pos-
sible through shared repository of open source interfacing
tools ([11] [16]) and the Processing visualization library [9].

Feedbacks. We found building MalwareVis to be a re-
warding experience: not only the participants with different
backgrounds have learned from each other, but the users are
intrigued by our design as well during informal user testing.
From their feedbacks, we have concluded two major advan-
tages of the cell view. The first advantage is that it provides
a global view: a single cell view is able to represent up to
6000 flow records in a pcap file without significant visual
clutter (Fig. 3). The second advantage is that it provides
a graphical user interface that allows the user to analyze
different malware behaviors interactively.

Future Development. During our informal user test-
ing, a user asked if there is any relationship between differ-
ent malware instances and how to visualize them. Binary
and n-ary relationships do exist within a corpus of malware
instances. For example, malware frequently found in honey-
pots actually behave as downloaders and simply download,
install and execute other malicious binaries. Furthermore,

Figure 4: From left to right, we show a sequence of visualizations of the same malware instance with increasing
α values: (a) linearly mapping the starting times to angles would results in visual clutter; (d) equalized
mapping helps to reduce the overlapping effects.

Figure 5: MalwareVis’s user interface has a table view that allows the user to browse and filter malware
entities and the cell view for graphical representations, interaction and comparision.

malware is often packed resulting in binaries that are MD5
unique, but exhibit identical behavior. Currently, Malware-
Vis does not support highlighting these relationships auto-
matically, but we believe this is a possible direction for future
work.

7. CONCLUSION
Malware network traces are important characteristics of

a malware sample’s behavior. To address the need of a vi-
sual representation in the workplace of malware analysis, we
have develop a processing and visualization tool, Malware-
Vis, that allow a security analyst to filter, select, visualize,
and compare malware network traces. It reads pcap files,
processes them into streams and generates cell views for the
user-selected malware entities interactively. In this paper,
we have described our visualization design and demonstrate
the advantages of using cell views. In the future, we will ex-
plore several areas such as visualizing the relationship among
a collection of malware network traces.

8. ACKNOWLEDGEMENTS
We would like to thank reviewers for their comments, Prof.

Jarek Rossignac and Wenke Lee, Dr. Wes Bethel and Prab-
hat for their suggestions, PhD student Ikpeme Erete for his
help.

9. REFERENCES
[1] U. Bayer, C. Kruegel, and E. Kirda. Ttanalyze: A tool

for analyzing malware, 2006.

[2] R. Blue, C. Dunne, A. Fuchs, K. King, and
A. Schulman. Visualizing real-time network resource
usage. In Proceedings of the 5th international
workshop on Visualization for Computer Security,
VizSec ’08, pages 119–135, Berlin, Heidelberg, 2008.
Springer-Verlag.

[3] M. C. Chuah. Dynamic aggregation with circular
visual designs. In Proceedings of the 1998 IEEE
Symposium on Information Visualization, INFOVIS
’98, pages 35–43, Washington, DC, USA, 1998. IEEE
Computer Society.

[4] G. Combs. www.wireshark.org.

[5] G. Conti. www.rumint.org, rumint: A pvr for network
traffic and security visualization. www.rumint.org,
2006.

[6] A. Dinaburg, P. Royal, M. I. Sharif, and W. Lee.
Ether: malware analysis via hardware virtualization
extensions. In ACM Conference on Computer and
Communications Security, pages 51–62, 2008.

[7] J. Duan and G. Qiu. Fast tone mapping for high
dynamic range images. In Proceedings of the Pattern
Recognition, 17th International Conference on
(ICPR’04) Volume 2 - Volume 02, ICPR ’04, pages
847–850, Washington, DC, USA, 2004. IEEE
Computer Society.

[8] F. Fischer, F. Mansmann, D. A. Keim, S. Pietzko, and
M. Waldvogel. Large-scale network monitoring for
visual analysis of attacks. In Proceedings of the 5th
international workshop on Visualization for Computer
Security, VizSec ’08, pages 111–118, Berlin,
Heidelberg, 2008. Springer-Verlag.

[9] B. Fry and C. Reas. www.processing.org.

[10] J. R. Goodall, W. G. Lutters, P. Rheingans, and
A. Komlodi. Preserving the big picture: Visual
network traffic analysis with tnv. In Proceedings of the
IEEE Workshops on Visualization for Computer
Security, VIZSEC ’05, pages 6–, Washington, DC,
USA, 2005. IEEE Computer Society.

[11] Jython. http://www.jython.org.

[12] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: The kernel-based virtual machine for
linux, 2007.

[13] K. Lakkaraju, W. Yurcik, and A. J. Lee. Nvisionip:
netflow visualizations of system state for security
situational awareness. In Proceedings of the 2004 ACM
workshop on Visualization and data mining for
computer security, VizSEC/DMSEC ’04, pages 65–72,
New York, NY, USA, 2004. ACM.

[14] R. Marty. afterglow.sourceforge.net, afterglow: Link
graph visualization for network flow data.
afterglow.sourceforge.net, 2007.

[15] J. McPherson, K.-L. Ma, P. Krystosk, T. Bartoletti,
and M. Christensen. Portvis: a tool for port-based
detection of security events. In Proceedings of the 2004
ACM workshop on Visualization and data mining for
computer security, VizSEC/DMSEC ’04, pages 73–81,
New York, NY, USA, 2004. ACM.

[16] P. packet creation and parsing library.
http://code.google.com/p/dpkt.

[17] D. Quist and L. M. Liebrock. Reversing compiled
executables for malware analysis via visualization.
Information Visualization, 10(2):117–126, 2011.

[18] T. Taylor, D. Paterson, J. Glanfield, C. Gates,
S. Brooks, and J. McHugh. Flovis: Flow visualization
system. In Proceedings of the 2009 Cybersecurity
Applications & Technology Conference for Homeland
Security, CATCH ’09, pages 186–198, Washington,
DC, USA, 2009. IEEE Computer Society.

