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Abstract—We investigate the problem of kriging analysis
for estimating quantities at unknown locations given a set of
observations. Widely known in the geostatistical community,
kriging bases spatial prediction on a closed-form model for the
spatial covariances between observations, deriving interpola-
tion parameters that minimize variance.

While kriging produces predictions with high accuracy,
a standard implementation based on maximum likelihood
involves repeated covariance factorization, forward-solve, and
inner product operations. The resulting computational com-
plexity renders the method infeasible for application to large
datasets on a single node. To facilitate large-scale kriging
analysis, we develop and implement a distributed version of
the algorithm that can utilize multiple computational nodes as
well as multiple cores on a single node.

We apply kriging analysis for making predictions from a
medium-sized weather station dataset, and demonstrate our
parallel implementation on a much larger synthetic dataset
consisting of 65536 points using 512 cores.

Keywords-Spatial data estimation, Kriging analysis, Parallel
algorithms

I. INTRODUCTION

The field of spatial statistics provides a range of important
statistical models for analyzing spatially-indexed data. These
techniques can be used for the characterization of the spatial
structure of environmental variables, distinguishing signal
from noise, and prediction at locations without measure-
ments. With observational datasets, such as weather station
readings or satellite images from remote sensing, one may
want to predict at arbitrary locations or extrapolate to
regular grids for model comparison, numerical simulation,
and visualization. In all of these cases, it is important to fit
the data using a spatial model that can borrow strength from
available observations in a way that makes use of the spatial
structure of the data. It is equally important to calculate
uncertainties associated with these predictions.

Kriging is a powerful statistical technique which can be
applied to all of these problems [4] [6]. The calculations
involved in kriging lie at the core of advanced models which
are used to analyze a wide variety of spatial as well as spatio-
temporal data [6]. This broad class of methods is widely
used for analyzing climate data and other environmental
datasets [12], and the calculations also lie at the core of

statistical approaches to uncertainty quantification [9]. Krig-
ing can also be viewed as estimation based on an underlying
Gaussian process representation of the unknown spatial field;
this construct tends to be used in many problems in machine
learning. Therefore, parallel frameworks that allow large
scale kriging analysis are potentially applicable to a broad
suite of statistical and machine learning methods based on
Gaussian process methodology.

Modern approaches to kriging maximize the likelihood
of the observations to obtain estimates of model parameters
that determine predictions under the kriging approach. The
likelihood maximization step in kriging relies heavily on
matrix operations such as factorization and forward-solve.
The covariance matrices used in these operations represent
the pairwise relationships among training locations, hence
they are of O(N2) storage complexity, where N refers
to the number of training data points. The computational
complexity is dominated by the O(N3) cost of dense
cholesky factorization of these matrices. Due to the lack
of distributed implementations, researchers are typically
limited to processing matrices that can fit in memory on
a single workstation. This problem is exacerbated by the
ever-increasing size of both simulation and observational
datasets that are now becoming available. For instance,
climate simulations routinely produce datasets with O(1M)
points. Consequently, spatial statisticians adopt approxima-
tion techniques [11] [8] that consider subsets of training
data local to the query locations, thereby losing fine-grained
information of scientific interest. The goal of this paper
is to enable exact kriging on large datasets by designing
and implementing a high performance, parallel version of
kriging.

We address the following challenges in this paper:

• How do we design a framework for enabling parallel
kriging computations?

• How do we utilize distributed memory nodes for tack-
ling large scale datasets?

• How do we utilize modern multi-core architectures?
• What are the performance and scalability for such a

framework?



In this paper, we first present an expository account of
kriging for the benefit of readers who are not familiar
with the technique. We contrast this approach to possibly
more familiar techniques such as inverse distance-weighted
interpolation and least squares regression [10][1]. We then
introduce our parallel algorithm for kriging analysis. We ap-
ply the implementation to a precipitation anomaly dataset for
illustrative purposes, and conduct weak scaling experiments
on upto 512 cores for a synthetic dataset with 65,536 entries.
Finally, we conclude with some thoughts on limitations and
future work.

II. KRIGING MODEL

Let us consider the set of N training locations {Si}, with
a measurement available at each location Si, denoted by
y(Si). The process of estimating the target function y at
unknown locations uses the following two steps:

1) Interpolation: which constructs the estimate as a
weighted sum of training observations. Usually, the
weight is a function of distances between the training
locations and the query location and contains unknown
parameters that must be estimated.

2) Parameter estimation: this estimates the parameters
by minimizing a objective function O that reflects the
discrepancies between the training data and estimates
at the training locations.

In absence of a statistical model, there could be many ways
to interpolate the target function. For illustrative purposes,
we will consider the inverse distance weighted interpolation
technique that has been well developed in the machine
learning community [10] [1].

A. Inverse Distance Weighted Estimation

Given a query location Sq , the inverse distance-weighted
interpolation approximates the target function y(Sq) by the
following linear equation [10]:

ŷidw(Sq) =
∑

wiy(Si) (1)

The interpolation coefficients are of the form wi =
λ( 1

d(Si,Sq) )ρ, where λ is the inverse of the sum of all
coefficients, and ρ is a positive weighting power, meant to
weight the contribution of a observation by its closeness
to the query location. In other words, the inductive bias in
distance-weighted interpolation is that the contribution of a
observation is inversely proportional to a power function of
its distance from the query location.

In the estimation step, we choose ρ and λ that minimize
the squared error summed over the set of training examples

E =
∑y(Si)−

∑
i 6=j

λ(
1

d(Si, Sj)
)ρyj

2

.

The objective function that we are trying to minimize is as
follows:

Oidw = (Y −WY )T (Y −WY )

where Y is the column vector of measurements at training
locations and W is the inverse distance matrix

Wij =

{
λ( 1

d(Si,Sj) )ρ if i 6= j

0 if i = j.

B. Kriging Estimation

The Kriging model approximates the target function by
linear interpolation with a different form:

ŷ(Sq) = g(Sq) +
∑

ki(y(Si)− g(Si))

where g represents the existing knowledge of the spatial field
and is generally either a constant or linearly varying over
space. We consider a specific example where the observation
y is the anomaly measured from the ground truth, therefore
g vanishes. The interpolation equation can be further written
as:

ŷkrig(Sq) =
∑

kiy(Si) (2)

Kriging interpolation minimizes the mean squared error of
prediction [4]; the interpolator can be shown to correspond
to K = ΩΣ−1, where K is the row vector representation
of {ki}, Ω is the covariance vector between the query and
the training data, and Σ is the covariance matrix of the
N training data points. There are a variety of covariance
models that are used; two common ones involve exponential
and squared exponential decay with respect to the distance
between observations. Predictions can be written in terms of
the covariance between observations, Σij = λkρ(d(Si, Sj)),
where kρ is the radial basis function corresponding to the
given covariance model1, with parameter(s) ρ that need to
be estimated. Note that this approach assumes that nearby
observations share more similarities than observations that
are far apart.

In kriging, we choose λ and ρ that maximize the likeli-
hood of the training data:

P =
1

(2π)
N
2 |Σ| 12

e−
1
2Y

T Σ−1Y

The process is the same as minimizing the negative log-
likelihood, written as the objective function Okrig:

Okrig = log|Σ|+ Y TΣ−1Y (3)

A example of kriging and inverse distance-weighted esti-
mation is shown in Section IV-A.

1A radial basis function kρ(d) decreases from 1 to 0 as d increases.
For example, kρ(d) can be exp(−d/ρ) (exponential), or exp(−d2/ρ2)
(Gaussian), or 1− 3d

2ρ
+ d3

2ρ3
(spherical)



C. Steps involved in performing Kriging analysis

The first step of kriging analysis is to construct the
symmetric N ×N distance matrix from training locations:

Dij = d(Si, Sj) (4)

Then we calculate the covariance matrix Σ given λ, ρ as
follows

Σij = λkρ(Dij) (5)

To compute the objective function in Eq.3 the following
linear algebra operations are performed:

1) Cholesky decomposition computes the lower triangular
matrix L by factorizing Σ:

LLT = Σ (6)

2) forwardsolve solves for X with L as the coefficient
matrix for a system of linear equations and Y as the
constant term:

X = L−1Y (7)

3) the last routine computes the inner product of X and
the log sum of L’s diagonal elements:

Q = XTX (8)

log(| L |) =

N∑
i=1

log(Li). (9)

Finally the objective function is simply the sum 2log|Σ|+Q.
In summary, our kriging analysis implementation consists

of the following key phases:

• Data preparation: initialization of training locations S
and observations Y , construction of distance matrix
(Eq.4)

• Objective evaluation: includes calculation of the co-
variance matrix (Equation 5), Cholesky factorization
(Equation 6), forward solve (Equation 7), inner prod-
uct (Equation 8), diagonal log sum (Equation 9) in
sequence.

• Objective function minimization: this is equivalent to
likelihood maximization, with the above procedure car-
ried out iteratively for varying λ, ρ, µ in a optimizer,
where the gradient and Hessian of the objective func-
tion is evaluated.

• Kriging interpolation and uncertainty calculation: this
phase consists of a set of linear algebra routines similar
to objective evaluation. This step constructs distance
and covariance matrix from query and training locations
similar to Eq. 4 and 5. The uncertainty calculation
consists of factorization and forward solve similar to
Eq. 6 and 7.
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Figure 1. Left figure shows the “distribute-compute-collect” mode. Right
figure shows our approach that allows local reduction.

III. PARALLEL IMPLEMENTATION

As the number of spatial data points increase, the as-
sociated N × N covariance and distance matrices become
quadratically larger. In practice we have observed that exact
likelihood computation becomes infeasible for more than
∼10K spatial locations, even on some high-end worksta-
tions. This motivated us to perform all operations involved
in evaluating the objective function in a fully distributed
fashion. In our implementation, child nodes perform all steps
of objective evaluation: construction of covariance matrix,
factorization, forward solve, inner product and diagonal sum,
in parallel. Master node controls the optimization: it pulls
local results in order to evaluate the gradient and Hessian
of the objective function and updates the learned spatial
parameters. Our design prevents the memory bottleneck;
we explicitly avoid situations wherein the master node
processes a large matrix and distributes the data to child
processes. For instance, the master process is not tasked
with covariance construction or collection of intermediate
factorization results. This is key difference between our
implementation and RScaLAPACK [15], which farms out
data for processing to child processes and collects the results
back on a single node. We illustrate this key difference in
Fig. 1.

A. Dependency Graphs

Our R implementation breaks matrices and vectors into
roughly even sized pieces for individual computational task.
Once the matrix pieces are distributed across nodes, the
factorization and forward solve tasks now begin to compute
local result and communicate with each other at different
points in time. This is illustrated in Figure 2, which shows
the dependency graph of the flow of data. On a distributed
memory architecture, we need to explicitly move the data
using MPI. We note that our distributed algorithm for the co-
variance factorization step is not novel, ScaLAPACK [14] [5]
implements similar algorithms. Our distributed algorithm
for factorization is motivated by previous literature on dis-
tributed Cholesky factorization [2] [7].



Figure 2. Dependency Graph for computational tasks during factorization
and forward solve.

An important difference between our software framework,
and accelerated linear algebra kernels provided by libraries
such as ScaLAPACK, is that we are able to do an end-to-
end analysis of our specific use case (i.e. kriging analysis
operations being composed of a factorization followed by
a forward solve) to optimize the execution of the dis-
tributed algorithm. We use classic parallel programming
optimizations such as local reduction and pipelining across
these heterogeneous linear algebra computations to overlap
the computation and communication tasks effectively. We
identify that ScaLAPACK is constrained to optimizing indi-
vidual tasks (i.e. factorize, forward solve, etc), hence cannot
compose a sequence of computations in an optimal fashion.

We use Rmpi [13] for interprocess communication for
explicitly moving data in accordance with the dependency
graph. For utilizing multi-core processor architectures, we
link R to a threaded Intel Math Kernel Library (MKL)
implementation of BLAS, which is optimized for Intel
processors [16]. The highly tuned MKL implementation
takes into account various aspects of shared-memory parallel
computations (i.e. multiple cache hierarchies, NUMA layout,
memory bandwidth, etc). Therefore, our software is able
to fully utilize all available cores on a single node in a
hybrid parallel fashion. We note that our software design
can enable us to utilize heterogeneous computing hardware
in the future, i.e. by utilizing CUDA BLAS for graphics
accelerator hardware.

B. Node-level parallel algorithms

Alg. 1 and Alg. 2 are pseudo codes for our node-level
parallel algorithms for factorization and forwardsolve. We
have shown pictorial representations of these algorithms in
Fig. 2, where 10 tasks operate on a generic square matrix.
The tasks in a column are cyclic distributed to child nodes
so as to allow load balancing.

We note that these two computational steps have the
most complex dependency relationships as compared to
computing the inner product and the diagonal sum. This is
because that once the factorization result L and the solution
vector X are available, following steps can be computed
by the diagonal processes in a fully parallel fashion with

minimal interprocess communication. We now focus on
explaining the distributed algorithms for factorization and
forwardsolve in detail.

Before the factorization step, we assume the submatrix
Cij is available on a child node. Here Cij represents a
submatrix of C of size N

P ×
N
P , where P is the partition

number, i, j are indices from 1 to P . Since the covariance
matrix is symmetric, we only need to store the lower half
of the matrix, hence, the row index i is always greater than
the column index j in our construction.

When factorization is completed, child nodes store the
local factorization result Lij , the submatrix of the global
factorization result L. The master process does not collect
this intermediate result. Lij serves as the input to the
distributed forwardsolve, as shown in Alg. 2, where Yi is the
sub-vector of observations Y . After distributed forwardsolve,
Task (i, j) holds the i-th sub-vector Xi of the solution vector
X .

Alg. 1 and 2 represent the core tasks in kriging regression
as mentioned in Section II-C. The pseudocode is executed
at a task-level by our implementation. We note that imple-
mentations for key kernels chol, forwardsolve, crossprod
are provided by the MKL implementation of the BLAS
interface.

Alg. 1 Distributed Factorization for Task(i, j): C ⇒ LLT

Input: Cij
Output: Lij
Lij := Cij
if i = j then

for k = 1 : j − 1 do
inmsg:= recv from Task(i, k)
Lij := Lij - crossprod (inmsg)

end for
Lij = chol(Lij)
broadcast Lij to Task(k, j), k ∈ [i+ 1, P ]

end if
if i > j then

for k = 1 : j − 1 do
inmsg1 := recv from Task(j, k)
inmsg2 := recv from Task(i, k)
Lij := Lij - crossprod (inmsg1, inmsg2)

end for
inmsg:= recv from Task(i, i)
Lij :=forwardsolve(inmsg, Lij)
broadcast Lij to Task(i, k), k ∈ [j + 1, i]
broadcast Lij to Task(k, j), k ∈ [i+ 1, P ]

end if

IV. RESULTS

A. Predicting precipitation anomalies
We first show a real-life application of kriging to a

scientific problem. We consider training data consisting of



Alg. 2 Distributed Forwardsolve at Task(i, j): X ⇐ L−1Z

Input: Yi
Output: Xi

if i = j then
for k = 1 : i− 1 do

inmsg:= recv from Task(i, k)
Yi := Yi − inmsg

end for
Xi = forwardsolve(Lij , Yi)
broadcast Xi to Task(k, i), k ∈ [i+1, P]

end if
if i > j then
Xi:= recv from Task(j, j)
outmsg:= crossprod(Lij , Xi)
send outmsg to Task(i, i)

end if

yearly precipitation anomalies (measured from the mean
values) by 7352 weather stations across US (see Fig. 3(a)).
Our goal is to make predictions at new spatial locations.

We assume that the covariance between two observations
is a exponential radial basis function (presented in Sec-
tion II). To establish a baseline, we also apply the inverse-
distance-weighted method to the same problem, in which the
weighting power ρ is chosen to minimize the squared error
summed over all training data. We refer to this non-statistical
method as optimal-IDW.

We show the estimation results of kriging and optimal-
IDW for prediction values at 30 randomly chosen query
points (distinct from the training locations). The resulting
predictions are plotted in Fig.3(b), where the annotation
on the x-axis specifies the longitude and latitude of each
query location. The plot is meant to provide an illustration
of the range of errors produced by both techniques. More
quantitatively, we report a RMSE of 2.79 for kriging and
3.45 for optimal-IDW over the 30 query locations. The
results indicate that kriging works better than optimal-IDW
for this test.

B. Parallel Performance

We now present the parallel performance on a much larger
dataset, as one of the goals of this paper is to present a
parallel processing framework for kriging analysis.

1) Dataset: To put our parallel implementation to the
test, we randomly generated 65, 536 spatial data values
on a 256 × 256 regular grid, as shown in Fig. 4(a). Our
performance results are based on this synthetic dataset.

2) Hardware: All of our profiling experiments were
conducted on Carver, an IBM iDataplex system at NERSC.
Each Carver node consists of 2 quad-core Intel Nehalem
2.67GHz processors, 10GB of usable memory and Infiniband
4X QDR interconnect.

(a) Precipitation anomalies from 1962 at US weather stations.

(b) A test involving both kriging and optimal-IDW for 30 query locations from the anomaly
dataset.

Figure 3. Estimating precipitation anomalies

3) Multi-core Performance on single node: We started
our experiments with a baseline single-threaded program
in R to perform kriging computations. The average time
for the objective evaluation step for 8k data points is 29.3
seconds. We then linked our implementation to the threaded-
MKL BLAS implementation. The runtime of objective eval-
uation reduced to 4.2 secs. Specifically, the time spend
on covariance construction, factorization, forwardsolve are
0.26s, 2.8s, 0.96s respectively. Hence, the multi-threaded
implementation provided us with a speedup factor of 7.0
with respect to the single-threaded implementation on a
single Carver node.

4) Distributed Performance: We now design a weak
scaling experiment to test the performance of our node-level
parallel implementation linked with threaded MKL, For this
experiment, we vary the number of spatial data points across
8K, 16K, 32K and 64K points. Since the resulting covariance
matrices are quadratically related to number of points N , this
results in problems with 64M, 256M, 1024M and 4096M
double-precision entries. We run these problems on 8, 32,
128 and 512 cores respectively and report the elapsed time.
Recall that weak scaling experiments involve scaling the size



(a) 64k randomly generated spatial data on regular grid

(b) weak-scaling performance

(c) speedup ratio

Figure 4. Performance profiling

of the dataset (in this case the matrix size) proportionally
with the number of computational cores. In other words, we
keep N2

n constant, where n is the number of cores.
Figure 4(b) shows results from our weak scaling study.

Overall, we observe a linear relationship between the elapsed
time tn and the number of cores n. This can be explained
with the following series of observations: the computational
complexity is dominated by an O(N3) term corresponding
to factorization. t1, the sequential running time is propor-
tional to O(N3); n is proportional to O(N2) from the weak
scaling design. tn, the elapsed time is proportional to t1

n ,
which turns out to be O(N) in our case. Consequently, the
elapsed time increases linearly as we make the problem size
larger.

Figure 4(c) shows the speedup Sn = t1
tn

of our parallel
implementation. Our results indicate that we can get fairly

substantial performance improvement (≈ 120) over a single
core for a substantially larger problem. We believe that
our results are a positive step forward for applications that
involve large scale kriging on massive spatial datasets.

V. CONCLUSION

In this paper, we explore kriging analysis for spatial
prediction at query locations given a set of observations.
Kriging provides estimates with high accuracy, however it
involves computationally demanding matrix operations that
limit the technique’s applicability to large spatial datasets.
We develop and implement parallel framework for improv-
ing the scalability and applicability of kriging analysis. Our
framework performs all matrix operations in a fully parallel
fashion. The implementation utilizes distributed memory
nodes, as well as multi-core CPUs on a single node. We
demonstrate the application of our software on a real-world
scientific problem, and report weak scaling results on up to
64kx64k covariance data and 512 cores.

As a final note, statisticians routinely use a wide variety
of methods based on kriging that rely on composition of the
same core calculations considered in this paper. Therefore,
our framework can be applied to various extension of kriging
and and other Gaussian process-based methodologies (e.g.,
[3], [6]) which are now widely-used in estimating spatial
and spatio-temporal data.
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