
Distributed Likelihoods Computation for Large Spatial Datasets
Wei Zhuo† Prabhat‡ Cari Kaufman§ Chris Paciorek§

†Georgia Institute of Technology ‡Lawrence Berkeley National Laboratory §UC Berkeley, Dept. of Statistics

Abstract

We investigate the problem of fitting geospatial models to large
spatial datasets. The process of fitting a model involves ef-
ficient computation of likelihoods. An exact solution of the
problem for n observations requires computing the determi-
nant and inverse of the n×n covariance matrix, which can be
expensive for large n. We examine two modes of parallelization
to overcome these limitations: multi-threaded (within single
node) and distributed (across multiple nodes).
On a single node, we used the multi-threaded BLAS implemen-
tation to achieve significant performance gain over the single
threaded implementation.
For a cluster of compute nodes, we implemented a distributed
likelihood algorithm using RMPI. The resulting computation
utilized all available cores on a single node, as well as multiple
nodes on the cluster.

Introduction
• Traditional geostatistical model assumes the covariance
between two spatially indexed observations Zi and Zj at
location Si, Sj has the following simplified form

Σ[i, j] = κe−|Si−Sj|/ρ (1)
• from which the joint likelihood of n observations is

2π−n/2 | Σ |−1/2 e−
1
2(Z−β)TΣ−1(Z−β) (2)

• Current statistical methods use EM algorithm to evaluate
important spatial constants in the covariance model, which
iteratively compute the joint likelihood up to thousands of
times.

Major steps in the EM algorithm/likelihood computation on a
single node are
• exp: generating pairwise covariances
• chol: factorizing the covariance matrix (Σ = LLT)
• forwardsolve: solving a lower triangular linear system
(L−1(Z − β))

The growing trend indicates that computing the joint probability
of 65k spatially indexed data would take at least 4 hours, and
evaluating spatial constants would easily take several months!

Algorithm Overview

• Data Distribution: The master process distributes the observation Z and
location S data to a group of slave process. Each process computes a local
covariance matrix from the local location vector. Only the lower half of the global
covariance matrix is actually constructed by the slave processes.

• Covariance Factorization (Σ = LLT): Each slave process locally performs
one of the matrix-matrix operations Cholesky, Forwardsolve and Crossproduct
based on received messages and its cartesian coordinate. After the factorization,
processes residing on the diagonal compute their local determinant and report it
to the master.

• Global Forwardsolve (X = L−1(Z − β)): Each slave process locally performs
one of the matrix-vector operations Forwardsolve and Crossproduct. Then the
processes residing on the diagonal compute the local crossproducts of their
solution vectors, and report the result to the master.

• Data Collection The master process calculates the determinant | Σ | by
multiplying every local determinants collected in the Covariance Factorization
step, and calculates the crossproduct | XTX | by adding the local values
collected in Global Forwardsolve.

Analysis of Communication Cost
Our framework for spatial likelihood computation has the following advantages over
the ScaLAPACK implementation.
• eliminate the need for large memory node by distributing the covariance matrix
construction to multiple nodes.

• reduce the communication between the slave processes and the master by
performing local reduction on the diagonal processes.

Following table summarized the IPC cost, assuming P (P + 1)/2 slave processes
Data Distribution Factorization Forwardsolve Data Collection

msg count (3P 2 + 3P)/2 (P 3 − P)/2 P 2 − P 2P
msg type vector matrix vector scalar
During the experiment, we measure the time required for initial data distribution and
estimate the total communication cost, from which we derive the estimated speedup
with IPC cost.

Acknowledgment
• This work was supported by the Director, Office of Science, Office and Advanced Scientific Computing Research, of the U.S. Department of

Energy under Contract No. DE-AC02-05CH11231.

Experimental Results
• We run the experiment on Carver, an IBM iDataplex system at
NERSC. Each Carver node consists of 2 quad-core Intel Nehalem
2.67GHz processors.

• We show scaling performance of our distributed code from 1 to 64
compute nodes as well as the speedup between single-core and
multi-core.

• The speedup is approximately 7 with multi-thread implementation
on an single Carver node, and an overall speedup of 28 on a cluster
of 32 compute nodes.

• The largest covariance matrix we factorized is 64k × 64k, which
contains 4B nonzero doubles. The best wall-clock time for
factorizing 32k × 32k and 64k × 64k covariance matrices are 100s
and 474s respectively.

We plot the estimate speedup that takes into account the communi-
cation cost. The observed results generally agree with the estimation.

Implementation Issues
• Dynamic Scheduling: There is no strict order on independent
message updates. This dynamic scheduling is achieved by coloring
messages according their types in stead of their source coordinates.

• Load Balancing: We use distribution blocking. In particular,
processes within the same column are distributed to different nodes
to improve concurrency.

Conclusion

• We have successfully factorized 64kx64k covariance matrix for
likelihood computation. These results are very encouraging for
researchers in spatial statistics who can now perform large scale
computations.

• We have Demonstrated a total speedup factor of 28 with respect
to a single core, when running on a cluster of 32 multi-core nodes.

• As expected, the interprocess communication cost is the major
bottleneck in improving scaling performance of the implementation.

