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SUMMARY

A bending is the effect of applying a continuous, non-affine transformation

to a solid. It is controlled by a low dimensional proxy, which can be a spine curve

or surface. This thesis addresses a suite of problems in bending with local volume

preservation, meaning that the transformation preserves the volume of any subset of

the solid. Our bending framework adopts the following assumptions in mechanics:

• Planes normal to the spine curve remain normal to the spine curve after bending.

• Lines normal to the spine surface remain normal to the spine surface after

bending.

With these assumptions, we derive a family of closed-form solutions for bending with

local volume preservation. The derivation exploits the constraint of unit Jacobian

determinant everywhere. We compute the solutions in real-time using analytic ge-

ometry, and discuss anticipated applications in shape manipulation or animation, as

well as geometric modeling of machining or deposition process.
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CHAPTER I

INTRODUCTION

1.1 What is bending?

A bending is the effect of applying a continuous, spatially-varying transformation to

a solid. It is controlled by a low dimensional proxy, such as a spine or a shell. For

example, one may interactively stretch or curve a spine, usually through the control

points of the spine. The deformation of the solid is then completely defined by the

deformation of the spine. Such effects happen often in shape-editing operations when

the designers or specialists manipulate a curve or a thin plate in manufacturing,

medical or aesthetics applications.

Consider that the designer starts with a shape S0, as shown in Figure 1, and

specifies an initial spine C0 that is green and goes through S0. The spine needs to be

a smooth curve that may pierce the solid S0 or not. In bending, the designer specifies

the positions and time-evolution of the control points of the spine curve C, such that

C changes from C0 to C1.

Assume that C0(s) is a point on the initial version C0 of the spine. Here s is the

Figure 1: An intuitive example of bending.
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parameter along the spine. We associate the parameter s with a point P0 of S0 such

that C0(s) is the closest projection of P0 onto C0. All points of S0 associated with

a particular parameter s of are called a cross-section, which is formally defined as

the point set {P0, P0 ∈ S0, arg min dis(C0(s), P0) = s}. Note that each cross-section

is planar. During bending, points of the same cross-section will remain in the cross-

section associated with the same parameter s. Note that the shapes of the initial

and deformed cross-sections may be different, but they are both planar. To sum, the

bending driven by a curve has the following assumptions: First, planes normal to

the curve, or cross-sections remain normal to the curve after bending. Second, the

parameter s of any cross-section remain the same during bending.

Often, the spine may represent the central axis of an elongated part and the key

idea is that the deformation of the solid is completely defined by the deformation

of the spine. Hence, the designer defines the initial spine (maybe by placing a few

initial control points for it) and then defines its deformation over time (maybe by

specifying a few key positions for each control point that will be interpolated by the

motion of that control point). Then for each time t, the bending algorithm computes

the current position of each vertex of the solid and displays the resulting triangulated

surface.

Similarly, in bending control by a base surface, the deformation of the solid is

completely defined by the deformation of the base surface. The designer defines the

initial base surface, which may be a torus patch or a spline surface, and then specifies

its deformation over time. Then for each time, the bending algorithm computes the

current position of each vertex of the solid and display the result.

Specifically, assume that C0(u, v) is a point on the initial spine surface. Here we

need two parameters u, v for surface parameterization. We associate the parameters

u, v with a point P0 of S0 such that C0(u, v) is the closest projection of P0 onto C0.

All points of S0 associated with a set particular parameters u, v form a line segment
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Figure 2: Models suitable for bending driven by a spine curve.

normal to C0 at C0(u, v). During bending, points of a line segment will remain in the

line associated with the same parameters. To sum, the bending driven by a surface

has the following assumptions: First, lines normal to the base surface remain normal

to the surface after bending. Second, the parameters u, v of any normal line segment

remain the same during bending.

To define bending formally, one needs to provide a mathematical formulation of

the time-parameterized mapping from the initial to the deformed position of each

vertex. Note that this mapping is not an affine transformation as a triangle does not

map into a triangle by bending. We address this problem by using a subdivision that

produces a fine triangulation, so that the error between the image of a triangle (by

bending) and the triangle spanning the images of its 3 vertices is small.

A key contribution reported in this thesis, is the mathematical definition of a

family of mappings that all satisfy the requirements of preserving planes or straight

lines normal to the spine or the surface, as well as preserving the local volume. We

give the full list of requirements in Section 1.4.
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1.2 Applications of bending

1.2.1 Bending driven by a curve.

Bending by a spine curve is motivated by applications in modeling tube-like struc-

tures, such as hoses, wires, ducts, and also deformations of a trunk, a snake, or a

tongue as shown in Figure 2. In these models, it is intuitive to specify a curve, which

may represent the central axis of an elongated part.

In shape-editing operations, the designer may manipulate the spine using two

frames, each controlled by a tracker in a different hand [23]. The orientations of the

trackers define the end-tangent directions to the spine. The total torsion along the

spine is controlled by the rotations of the trackers around the corresponding tangents.

In animation, the designer defines the initial spine and its evolution over time, as

mentioned in Section 1.1. To do so, she would specify only a few control points of the

spine and a few key positions for each control point that will be interpolated by the

motion of that control point. Then for each time t, the bending algorithm computes

the current position of each vertex of the solid and displays the resulting deformed

solid.

1.2.2 Bending driven by a surface.

Bending by a spine surface is in part motivated by the studies in mechanics on thin

plate bending. Instead of focusing on the deformation of the thin plate surface, we

are interested in the answer to this question: How does the thickness of the “meat”

attached to the surface change due to surface bending. For example, if the “meat”

is a volume-preserving finite element mesh. Assume that the volume of each cell in

the mesh is incompressible. Our bending algorithm computes the exact shape of each

cell during bending while the cell volume remains a constant.

In machining or deposition process, the spine surface is static and we refer to

it as the base (backbone) surface. The material removal rate at a point on the
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base surface is characterized by the ratio of the removed volume to the local surface

area at the point. For constant material removal rate, the milling depth is not a

constant and should adapt to the local curvature of the base surface. Hence, if the

base surface is developable, the milling depth can be computed by a locally volume-

preserving bending of a plane into the base surface. Similarly, the deposition amount

is characterized by the increased volume to the local surface area. We show that the

thickness of the deposited layer can be computed by a special form of the curvature-

sensitive formula in our bending framework.

1.3 Local volume preservation in bending

Physically plausible simulations that involve biological creatures or deformable shapes

made of incompressible materials require that the volume be preserved.

For example, during an animation where no external forces or torques are exerted

on a body, the momentum and kinetic energy are preserved. Both depend on the

mass and hence of the volume (if one assumes constant mass). Hence, changes of

volume during an animation will result in surprising changes of velocity.

It is much simpler to preserve global volume than local volume. For example,

one may dilate the entire solid by a specific amount to compensate for the undesired

volume gain or loss. In fact, one of the contribution of this thesis is to provide

a simple formula for computing that dilation amount for arbitrary (not necessarily

convex) solids. Unfortunately, preserving the global volume is not sufficient for a

physically plausible behavior.

Consider the two-dimensional version of this problem shown in Figure 3. The blue

curve represents the spine. We show (black outline) a slice of the solid. The center of

mass of the slice is shown as the yellow point, which is initially on the spine for clarity.

Assume that the user bend the spine downward. We show two versions of bending on

the left. In 1, the offset distance on each side of the spine remains the same, so the
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center of mass tends to move above the spine. In 2, the offset distance increase on

the concave side and decrease on the convex side of the spine, so the center of mass

tends to move below the spine.

Figure 3: Two versions of planar bending.

Naive spine bending is shown in 1, where the area of a region above the spine is

enlarged while the area of a region below is reduced. Hence, the center of mass is

above the spine. Therefore, it appears that some area that was initially below the

spine has magically moved above the spine.

When local area is preserved (shown in 2), the portion above the spine are

stretched along the spine and therefore become narrower, hence closer to the spine.

Portions below are subject to the inverse effect: they are pushed away from the spine.

The center of mass tends to move below the spine.

Figure 4 further explains the effect of local preservation. Imagine the slice has

a multiple layers along the spine. Each layer originally has the same area. After

spine bending, the area of each layer should remain the same. Therefore, the layers

above the spine gets stretched and become thinner. The layers below the spine gets

compressed and become thicker.

To formalize the notion of local volume preservation, one must introduce the
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Figure 4: The effect of local area preservation.

measure of the local volume change. We identify that the determinant of the Jacobian

of the transformation is a good measure of the local volume change. The Jacobian of

the transformation is J = ∂P1

∂P0
, where P1 represent any vertex of S1 after bending; P0

represent the corresponding vertex of S0 before bending. There is a local expansion

if the determinant, det(J), is larger than 1. The reverse is local contraction if det(J)

is smaller than 1. For local volume preservation, the determinant should equal to 1

exactly.

1.4 Problem formulation

After having introduced the framework of bending, we now turn to the formulation.

Recall that the designer starts with a shape S0 and specifies an initial spine C0, which

is a smooth curve that may pierce the solid S0 or not. Then the designer deforms C0

to C1. The solution for any shape to maintain its original volume during deformation

is to obtain a mapping M : S0 → S1, such that M preserves volume locally (i.e.,

vol(U) = vol(M(U)), for any subset U of S0). A list of requirements for M to be

valid and producing plausible results is the following.

1. Topology-independent: M should operate on any shape topology and indepen-

dent of S0. Hence, M is fully defined by C0 and C1.

2. Homeomorphism: M should be a homeomorphism between S0 and S1. This

7



is important because we want the mapping to be invertible: M−1(X1) = X0,

where M−1 is defined by the initial spine as C1 and the final spine as C0.

3. M should preserve the parameter on the spine. In bending driven by a curve,

the parameter s of any point of the solid should remain the same. In bending

driven by a surface, the parameters u, v remain the same.

4. Locally volume preserving: Last but most important, M preserves volume lo-

cally (i.e., vol(U) = vol(M(U)) for any subset U of S0). This is important

for the physical plausibility of digital simulations, especially when they involve

interactions between evolving solids (swimming creature) and surrounding, in-

compressible fluids.
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CHAPTER II

LITERATURE SURVEY

2.1 Prior art on bending

We present here an expository account of related work on bending. In particular,

we present them in this section in a chrological order of their emergence, which also

happens to reflect the degree of complexity of each model.

Barr [6] presents a bending model that simulates global linear bends along an axis.

In this model, the length of the spine does not change during bending. The bending

angle changes linearly in the bent region as shown in Figure 5. So the curvature k

is constant in the bent region. The offset distance from the spine does not change

during bending. This leads to the first version of bending in Figure 3.

Hsu, Lee and Wiseman apply the bending model to graphics design [17]. In this

work, the spine is a user-specified planar curve, representing an artistic brush stroke,

rendered with textures. They draw the textures using the normal to the spine as

the local y-axis. To deal with sharp bending, local self-intersections are trimmed as

shown in Figure 6.

The two approaches mentioned above do not preserve area or volume. A drawback

of the bending model described so far is that it can not produce the correct result

for simulating the bending of incompressible material. On bending a physical object,

the material on the concave side of the spine will be compressed while that on the

convex side stretched. The way and amount in which the material shrinks or expands

should be local volume preserving.

Chirikjian [10] presents a mathematically precise approach for 2D bending with

local area preservation. The solution is to update the offset distance based on the

9



Figure 5: Barr 1984, Global and local deformation of solid primitives

Figure 6: Hsu, Lee and Wiseman 1984, Skeletal strokes
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Figure 7: Llamas et al. 2005, Bender: A virtual ribbon for deforming 3D shapes in
biomedical and styling applications

curvature of the spine: h1− kh2
1

2
= h0, where h1 and h0 are the updated and the original

offset distances; k is the curvature. We use this formula for bending an image with

local area preservation [39]. To alleviate the drawback of insufficient sampling, we

use the spine-aligned grid. The deformed image is a texture mapping of the original

image with the deformed grid.

In machining with constant material removal rate, Moon [24] identifies the same

quadratic formula for offsetting backbone curves with uniform flux: The increased

area is evenly distributed along the boundary. The formula is h− kh2

2
= r, where h is

the milling depth and r is the material removal rate. In [39], we show how to generate

a series of contours of this curvature-aware offsetting. Directly offsetting according to

the formula exhibits an increasing amount of discontinuities where the curvature of

the previous offset changes rapidly. We propose to use the combination of curvature-

aware offsetting and selective smoothing to produce concentric offset contours that

are smooth and approach a constant area-to-length ratio.
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Llamas, Powell, Rossignac and Shaw present the Bender tool [23], which allows

the user manipulates the spine using two frames, each controlled by a tracker in a

different hand. The orientations of the trackers define the end-tangent directions to

the spine. The spine is modeled as a bi-arc curve [32]. The designer presses buttons

that have been engineered on the trackers to indicate the moment where the current

shape of the spine and of the torsion should be registered as the grab ribbon. Then,

as the designer manipulates the two trackers, the current ribbon is computed at each

frame.

In Bender, the mapping of the vertices of the solid is performed as follows. For

each vertex P0 of the solid, they compute the parameter s of the closest projection

C0(s) of P0 onto the spine of the grab ribbon. P0 is expressed in the local frame at

C0(s), P0 = C0(s) + xT0(s) + yN0(s) + zB0(s). They also compute the distance d

between P0 and C0(s). To compute the mapping P1, they identify the corresponding

frame T1(s), N1(s), B1(s) on the current ribbon. However, instead of mapping P0 to

P̄1 = C1(s) + xT1(s) + yN1(s) + zB1(s), they compute the screw motion M such that

M(0) is identity and M(1) maps P0 to P̄1. Then, they apply a fraction M(f(d)) of

that screw motion to P0 and obtain P1 = M(f(d))P0, where f(d) is a decay function

modeled using a cosine square expression.

Their approach is designed to support local tweaks, where the effect of the tweak

blends smoothly with the unchanged surrounding, as shown in Figure 7. Specifically,

to produce useful bending of tubular parts, they change the f function to give it a

plateau region. In this case, there is no attenuation and the effect of their mapping

is similar to the one proposed here with two differences: (1) They can support an

unnatural twist designed by the operator and distributed uniformly along the spine.

(2) Though within the plateau region, their bending does not preserve the local

volume.

12



2.2 Existing techniques in global volume compensation

Maintaining the volume is important for modeling deformations where the volume

occupied by the shape remains constant, and in physics-based simulations where

material incompressibility matters [21]. In general, volume can be efficiently corrected

by uniform scaling the shape by s = 3

√
Vt

V0
, where V0, Vt are current and target

volumes [11]. However, uniform scaling may produce unbounded Hausdorff error

between the original shape and the scaled shape, especially when the shape contains

parts that are long and thin [39].

As a post-processing step, area or volume preservation has been studied for multi-

level shape editing. Hahmann, Sauvage and Bonneau [13] present multiresolution

deformation of curves which satisfy the bilinear constraint of constant enclosed area.

In order for the volume to converge to the target value, they evaluate the current area

at each iteration, and adjust the control vertices. Since the cost of volume evaluation

is proportional to the number of vertices, Hirota, Maheshwari and Lin [15] compute

the volume at multiple levels so that the volume does not need to be evaluated exactly

at initial steps.

Angelidis, Cani, Wyvill and King [1] combine multiple volume-preserving shape

operations, called swirls, to form a complex deformation that is also volume-preserving.

They define the basic operation, called a swirl, that locally twists the space around a

axis. By arranging multiple swirls in a circle such that the twist axes of these swirls

are coplanar and radially outward, they can achieve the effect of pulling along the

direction normal to the twist axes.

In differential geometry, a classical theorem due to Steiner [35] establishes the

differential relationship between the surface properties and the volume enclosed. To

preserve the total volume, some authors grow or shrink the shape uniformly (via con-

stant distance normal offsetting rather than global scaling) based on global curvatures

in one step without iteration.
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For example, Moon [25]’s solution is to compute the variable offset distance from

the base surface that makes the deposition amount locally proportional to the surface

area. They verify the computational results on cylindrical, ellipsoidal and catenoid

surfaces. For general surfaces, their approach requires evaluating the Gaussian and

the mean curvatures everywhere on the surface. In comparison, we compute the

constant offset distance from the base surface that regain the target global volume.

Instead of evaluating the curvatures everywhere on the surface, we define and evaluate

the global curvatures to compute the constant offset distance. We verify our results

on triangle and quad meshes of various shapes.

2.3 Approaches to local volume preservation

In addition to keep the global volume of the object constant, local volume preservation

is essential to a more natural, physically plausible behavior of the deformation.

In deformation driven by a base surface, local volume preservation aims at pre-

serving the local volume distribution between the base surface and the offset surface.

Botsch and Kobbelt [8] explore the degrees of freedom in the position for a offset

point to satisfy the local volume preserving constraint: They do not require the offset

direction to be normal to the base surface. This is different in classical theory of

bending [27], where assumption is that lines remain normal to the base surface after

bending. Moon’s approach to equivolumetric offset has the same assumption [25].

However, it does not applicable to surface bending with local volume preservation

as it assumes a static base surface, which is not subject to any deformation. Even

if the author parameterized the base surface and assumed that it could deform, the

formula is not directly applicable as it does not take any local surface stretching or

compression factor into account.

In deformation driven by external forces, local volume-preserving deformation of

a object aims at obtaining a divergence-free displacement field for all points of the
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Figure 8: Rohmer, Hahmann and Cani 2008, Local volume preservation for skinned
characters

object: ∇ · V = 0, where V is the vector-valued function denoting the displacement

vector defined everywhere within and on the object. In finite element simulations [7],

the displacement field is computed by time integration. Each time step consists of:

(1) Evaluating the strain and stiffness tensors from the object geometry and material

property (2) Computing the force field everywhere within and on the object from the

evaluated strain and stiffness (3) use the force field to update the velocity field, which

is corrected to have vanishing divergence.

In skeleton-driven deformation with local volume preservation, Rohmer, Hahmann

and Cani [29] localize the volume correction on the corresponding part of the skin

mesh. They use a correction map associated with each region. To correct the volume,

they offset each point by a amount proportional to the correction map at each point.

To avoid local self-intersections, they detect if an offset point is within its region

determined by automatic segmentation. If a point is not within its region, they

translate the point until it reaches the border of its associated region, as illustrated

in Figure 8. In [30], they further show that a stylized deformation, such as isotropic

inflation, bulging, or rippling effects, is possible by using 1D profile curves to control

the correction map.
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Figure 9: Wang, Jüttler, Zheng and Liu 2008, Computation of Rotation Minimizing
Frames

2.4 Variations of bending

After discussed prior work and techniques on spine-driven deformation with local

volume preservation, we review here some of the variations of spine-based models in

other contexts. We have already mentioned that stroke design can be automated by

curve bending [22]. In addition, they extend the bending model to animating 2.5D

cartoon [16]. They anchor different parts (which may have overlaps) of a image to

a spine. The user can twist, bend or stretch the spine for deforming the parts and

generate a animation.

Spine-based models in object recovery proves useful in vision research [26]. Var-

ious types of objects are of structures of generalized cylinder, which is the result of

a possibly varying cross section along a path specified by a spine which may be an

arbitrary space curve. The cross section needs not be connected so as to have bifurca-

tions. In [3], the authors extract such structures for blood vessels reconstruction and

meshing from MR angiography. They also compute the central paths and maximal

inscribed balls in the vessel for vessel surface analysis.

Twist compensation. Surface parameterization is necessary to register each

point on the tubular surface with the spine. It is not trivial to determine the local

frame on the 3D spine for tubular surface parameterization. Due to that the Frenet

normal may be undefined at the inflection point, using the Frenet frame introduces

16



unwanted twists as show in the top row of Figure 9. Wang, Jüttler, Zheng and Liu

compute the rotation minimized frame as the better alternative to the Frenet frame.

Hanson and Ma [14] introduce the concept of parallel transport. Their concept is to

generate an parallel vector that turns as much as is necessary for it to remain normal

to the 3D curve. They present the parallel transport algorithm that computes a

smoothly varying frame consisting of a pair of parallel vectors orthogonal to each

other. Their algorithm makes use of the rotation matrix [12] for generating the

parallel transport frame along a piecewise linear approximation of the 3D curve.
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CHAPTER III

PLANS FOR REMAINING CONTRIBUTIONS

In this chapter we discuss the additional work, which will be included in the final

thesis.

3.1 Sampling and approximation

One impetus for future work is dissatisfaction with the accuracy in the current im-

plementation for spine-driven bending. We plan to use more accurate projection for

model registration, interpolate the normal and the curvature at vertices of the spine,

and experiment with different levels of subdivisions.

3.1.1 Projection

For each point P0 on the original shape S0, we compute its closest projection on the

spine curve C0. We identify two neighboring vertices Ck
0 and Ck+1

0 of C0 closest to

P0. The projection of P0 on C0 is the projection of P0 on the edge Ck
0C

k+1
0 .

Let Q0 be this projection and a measures how far Q0 is from Ck
0 :

Q0 = Ck
0 + aCk

0C
k+1
0 , 0 < a < 1.

Then parameters of Q0 is k, a. We use the same parameters to compute Q1 on C1:

Q1 = Ck
1 + aCk

1C
k+1
1 , which is used as the anchor point for computing P1 in both 2D

and 3D spine-driven bending.

3.1.2 Normal and curvature interpolation

Since we compute the projection (Section 3.1.1) as: Q = Ck+aCkCk+1, the normal N

and the curvature K at Q should be interpolated from the normals and the curvatures

at Ck and Ck+1.
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For the normals, we want to interpolate their orientations as a linear function of a.

Hence, we may use a SLERP or a more explicit formulation as follows: Let θ denote

the angle between Nk and Nk+1. Then, the interpolated normal should have angle

aθ from itself to Nk+1. θ is computed as:

Nk
⊥ = (Nk ×Nk+1)×Nk

θ = tan−1(Nk
⊥ ·Nk+1, Nk ·Nk+1)

N = Nk cos(aθ) +Nk
⊥ sin(aθ)

For the curvature, we can simply use linear interpolation:

K = (1− a)Kk + aKk+1.

Note that if the spine is a Euler spiral or a clothoid, linear interpolation computes

the curvature precisely, as the clothoid has linearly varying curvature everywhere.

If the spine is a smooth curve that does not have linearly varying curvature, linear

interpolation is still an accurate approximation as it is possible to locally approximate

any smooth curve with clothoids [5].

3.1.3 Experiment with different levels of subdivisions of the spine

We start with a piecewise linear representation of the spine curve and use J 3
2

subdi-

vision which converges to a quintic spline [31]:

P k+1
2j = (

3

2
P k
j−1 + 5P k

j +
3

2
P k
j+1)/8

P k+1
2j+1 = (

1

2
P k
j−1 +

15

2
P k
j+1 +

1

2
P k
j+2)/16

where k is the level of subdivision. By retrofitting, the subdivision curve can inter-

polates the original control points P 0.

We plan to investigate how the error scales with the number of curve points. The

error is measured as the root mean square of local volume deviations in the bending
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result [39]. All computations will be in double-precision floating point formats. The

guess is that the error decreases for the first few levels of subdivisions as more accu-

rate approximation of the spine is used. However, the levels of subdivision can not

be unbounded as numerical errors (in curvature, normal estimation) accumulate by

subdivision and eventually cause larger local volume deviations. To show how levels

of subdivision affect the result, we will plot the root mean square of local volume

deviations with the number of uniform subdivisions. Then we conclude the optimal

level of subdivisions in terms of the minimized RMS volumetric errors.

3.2 Extend to stretchable spine

We present the mathematical formulation of volume-preserving bending with stretch-

able spine. Non-stretchable spine, or length-preserving bending with local volume

preservation has been studied in 2D and 3D before [10] [39]. To the author’s knowl-

edge, the extension to the stretchable spine presented here is novel.

3.2.1 2D stretchable spine

Let C(s) represent a planar curve in space, where s may not be the arc-length pa-

rameter. Also, let l be the arc-length parameter such that l(s) is the arc-length of C

from its origin to C(s). The relationship between s and l is,

l(s) =

∫ s

s0

|C ′(s)|ds

Hence the derivative relationship between s and t is

dl = |C ′(s)|ds.

T (s), N(s) are vectors representing the unit tangent, normal at C(s). Let P

denote a offset point near C, we have

P (s, h) = C(s) + hN(s).
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Therefore,

dP

ds
= C ′(s) + h

dN(s)

ds
= T (s)(1 + hk)|C ′(s)|,

dP

dh
= N(s).

In the deformation driven by planar curve, C0 → C1, we allow the parameter h to

change from h0 to h1. The Jacobian determinant of the transformation is

det(
∂P1

∂P0

) = (1− k1x1)|C ′1(s)|dh1/(1− k0x0)|C ′0(s)|dh0.

For locally volume-preserving transformation, det(∂P1

∂P0
) = 1, therefore,

(1− k1h1)|C ′1(s)|dh1 = (1− k0h0)|C ′0(s)|dh0.

Integrate on both sides, we get

(h1 −
1

2
k1h

2
1)|C ′1(s)| = (h0 −

1

2
k0h

2
0)|C ′0(s)|

Note that the formula is similar to the non-stretchable spine except that we need to

take the magnitude of local tangent |C ′1(s)| and |C ′0(s)| into consideration.

3.2.2 3D stretchable spine

Let C(s) represent a 3D curve in space. s may not be the arc-length parameter.

Again, the derivative relationship between s and the arclength l is

dl = |C ′(s)|ds.

Let T (s), N(s) and B(s) be unit vectors representing the Frenet tangent, normal and

binormal at C(s). Let P denote an offset point near C, such that,

P = C(s) + xN(s) + yB(s).

Therefore,

dP

ds
= C ′(s) + x

dN(s)

ds
+ y

dB(s)

ds
,

21



or,

dP

dt
= T (t)|C ′(t)|+ x

dN(s)

ds
|C ′(t)|+ y

dB(s)

ds
|C ′(t)|

according to the derivative relationship.

On the other hand, Frenet Serret formulae give that,

dN

dl
= −κT + τB,

dB

dl
= −τN.

Therefore,

dP

ds
= (1− kx)|C ′(s)|T − τy|C ′(s)|N + τx|C ′(s)|B

∂P

∂(s, x, y)
=




(1− kx)|C ′(s)| −τy|C ′(s)|N τx|C ′(s)|B

0 1 0

0 0 1







T

N

B




Normal. In normal fleshing, we allow the parameter x to change from x0 to x1.

Hence the Jacobian determinant of the transformation is

det(
∂P1

∂P0

) = (1− k1x1)|C ′1(s)|dx1/(1− k0x0)|C ′0(s)|dx0

For locally volume-preserving transformation, det(∂P1

∂P0
) = 1, therefore,

(1− k1x1)|C ′1(s)|dx1 = (1− k0x0)|C ′0(s)|dx0

Integrate on both sides, we get

(x1 − k1x21/2)|C ′1(s)| = (x0 − k0x20/2)|C ′0(s)|

The solution x1 is the quadratic root of the above equation.

Binormal. In binormal fleshing, we allow the parameter y to change from y0 to

y1. The Jacobian determinant of the transformation is

det(
∂P1

∂P0

) = (1− k1x1)|C ′1(s)|dy1/(1− k0x0)|C ′0(s)|dy0

For locally volume-preserving transformation, det(∂P1

∂P0
) = 1, therefore,

(1− k1x1)|C ′1(s)|dy1 = (1− k0x0)|C ′0(s)|dy0
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Integrate on both sides, we get

(1− k1x1)|C ′1(s)|y1 = (1− k0x0)|C ′0(s)|y0

The solution y1 is linearly related to y0.

Radial. Radial fleshing is a combination of normal and binormal fleshing. A

point P near the spine is expressed as,

P = C(s) + r cos θN(s) + r sin θB(s)

In the radial solution, the offset distance from the spine is adjusted from r0 to r1.

The Jacobian determinant of the transformation is then expressed (in r0 and r1) as,

det(
∂P1

∂P0

) =
r1dr1(1− k1r1 cos θ1)|C ′1(t)|
r0dr0(1− k0r0 cos θ0)|C ′0(t)|

.

Let det(∂P1

∂P0
) = 1. Then solve for h1, we get

−2

3
k1 cos θ1r

3
1 + r21 =

|C ′1(t)|
|C ′0(t)|

(−2

3
k0 cos θ0r

3
0 + r20)

The solution r1 is a cubic root of the above equation.

3.3 Extend to shell-based bending

Let S(u, v) denote a two-dimensional sub-manifold, parameterized by u, v, of three-

dimensional Euclidean space. Let P denote a offset point from S,

P (u, v, h) = S(u, v) + hN(u, v).

Therefore,

∂P

∂(u, v, h)
=




Su(u, v) + hNu(u, v)

Sv(u, v) + hNv(u, v)

N(u, v)




The determinant of the above Jacobian is,

det(
∂P

∂(u, v, h)
) = (Su(u, v) + hNu(u, v))× (Sv(u, v) + hNv(u, v)) ·N(u, v).
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Due to that the mean curvature H(u, v) is the divergence of the normal, and the

Gaussian curvature G(u, v) is the cross product of the Hessian of the normal. The

above equation can be reduced to the following:

det(
∂P

∂(h, u, v)
) = (1− 2hH + h2G)|Su × Sv ·N |

Note that (1− 2hH +h2G) can be replaced by (1−hK1)(1−hK2) where K1 and K2

are principle curvatures.

We allow the parameter h to change from h0 to h1 during shell-based deformation.

In order for the deformation to be locally volume preserving, we have,

det(
∂P1

∂P0

) = 1

Therefore,

(1− 2h1H1 + h21G1)|S1u × S1v ·N1|dh1 = (1− 2h0H0 + h20G0)|S0u × S0v ·N0|dh0

Integrate on both sides, we get

h1 − h21H1 +
h31
3
G1|S1u × S1v ·N1| = h0 − h20H0 +

h30
3
G0|S1u × S1v ·N1|

Therefore, the updated offset distance h1 is the solution of the above cubic equa-

tion.

3.4 Implementation Schedule

We plan to finish the thesis and write a paper on finishing the remaining work. Fig 10

shows the implementation plan (after submitting the proposal): The more accurate

implementation and stretchable spine will take three weeks respectively. We plan to

take four weeks experimenting with surface-driven bending. In parallel, we will be

writing a paper, which would increase an overhead of two weeks on the schedule.

The estimation of running computer experiments is up to three months, which

is reasonable time period that fits the schedule of graduating in Spring 2014 and
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Figure 10: Implementation schedule of future work

getting prepared for the job market before graduation. After January, we will be

focusing on writing the thesis, applying for jobs, preparing interview slides, traveling

for interviews and preparing the dissertation defense.
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CHAPTER IV

SHORT SUMMARY

4.1 Bending driven by lower dimensional proxy

We have proposed several transformation frameworks in which the object transfor-

mation is driven by a lower dimensional proxy, which can be a planar curve, a 3D

spine, or a shell surface. The advantage of using a lower dimension proxy in specifying

shape deformation is that no parameter is required for modeling a collection of com-

plex transformations consisting of bending, stretching, and twisting. Our approach

first computes the closest projection of each point (the registration step), then the

parameter of the closest projection on the lower dimensional proxy is preserved dur-

ing deformation. In order for the deformation to simulate correct material behavior,

we solve the problem of local volume preservation with closed-form formulas for each

kind of proxy.

4.2 Volume preservation

Volume preservation is important to the modeling of incompressible deformation, such

as the transformation of shapes filled with clay or water, and animating them with

scientific correctness. We identify a family of closed-form solutions that preserve the

local and global volume. The solutions are derived precisely from the constraint that

the determinant of the Jacobian of the transformation should equal to 1. We show

that our solution and be computed using analytic geometry in real-time.
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4.3 Existing work and future plan

We attach here our two publications on existing work. The first paper [39], “Cuvature-

based offset distance”, presents solutions on three different problems: (1) global vol-

ume compensation with minimized Hausdorff distance; (2) spine-driven bending with

local area preservation; (3) machining with constant material removal rate. The sec-

ond paper, “Fleshing”, extends the 2D solution of spine-driven bending to 3D, and

presents a family of solutions for stylized deformations with local volume preserva-

tion. We also discuss the existence conditions, numerical errors and their treatments

in these two papers.

Chapter 3 proposes future work. Specifically, we plan to use more accurate regis-

tration by computing the closest projection exactly, and interpolating the normal and

curvature. We present our newly formulated mathematical frameworks that feature

stretchable spines and shells in Section 3.2 and 3.3. We hope that the proposal for fu-

ture work will get supported so that we can proceed to the implementation according

to the schedule in Section 3.4.
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APPENDIX A

PUBLICATIONS

We include here the two publications [39] [40] of the existing work discussed in this

thesis proposal.
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Wei Zhuo and Jarek Rossignac “Curvature-based Offset Distance: Implementation and Applications” Shape Modeling International 2012, May
22-25, Texas, USA. (This has appeared as a journal paper in a special issue of Computer & Graphics)

Curvature-based Offset Distance: Implementations and Applications

Wei Zhuoa, Jarek Rossignaca

awzhuo3, jarek@cc.gatech.edu
College of Computing, Georgia Institute of Technology

Abstract

We address three related problems. The first problem is to change the volume of a solid by a prescribed amount,
while minimizing Hausdorff error. This is important for compensating volume change due to smoothing, subdivision,
or advection. The second problem is to preserve the individual areas of infinitely small chunks of a planar shape,
as the shape is deformed to follow the gentle bending of a smooth spine (backbone) curve. This is important for
bending or animating textured regions. The third problem is to generate consecutive offsets, where each unit element
of the boundary sweeps the same region. This is important for constant material-removal rate during numerically
controlled (NC) machining. For all three problems, we advocate a solution based on normal offsetting, where the
offset distance is a function of local or global curvature measures. We discuss accuracy and smoothness of these
solutions for models represented by triangle or quad meshes or, in 2D, by spine-aligned planar quads. We also explore
the combination of local distance offsetting with a new selective smoothing process that reduces discontinuities and
preserves curvature sign.

1. Introduction

In this paper, we discuss the use of normal offsetting
[1] for volume or area preservation, where the offset
distance is computed globally or locally from curvature
measures. Specifically, we address the following three
problems.

1.1. Adjust volume while minimizing Hausdorff error

We are given a base solid P with volume VP. Typi-
cally, P is obtained by applying a small deformation to
some starting solid S , which has volume VS . The de-
formation may be the result of subdivision [2], smooth-
ing [3], or advection of a fluid/swimmer interaction [4].
We want to obtain an offset solid O that is similar to P,
but has volume VS . Specifically, we define O as the
shape that minimizes the Hausdorff distance, δ(P,O),
between P and O, with O constrained to having vol-
ume VS . Maintaining the volume is important in man-
ufacturing applications where weight matters [5] and
in physically based simulations where incompressibil-
ity matters [6]. The solution proposed here defines O
as the constant distance offset (CDO) of P: O = Ph.
We explain how to compute the correct distance h, both
in two and three dimensions. We discuss accuracy in
cases where P and O are represented by piecewise lin-
ear boundaries. In Fig. 1, we compare this solution to

Figure 1: The original 3-branch-star base shape P (green) is shown
with three offset shapes O (red) that enclose regions of the same area:
global scaling (left), variable distance offsetting (center), and con-
stant distance offsetting (right). The respective Hausdorff distances
are: 15.9, 4.6, and 3.1. A line segment connecting P and Q indicate
where the Hausdorff distance is reached. On the right, all points are at
the Hausdoff distance from the other set.

global scaling and to variable distance normal offsetting
(discussed in Sec. 1.3).

1.2. Preserve local area during spine bending
We are given a portion of a image R. R roughly

aligned along a smooth spine curve P. Note that P does
not need to be the medial axis of R and that the width of
R may vary along P. We are also given a bent version P̄
of P. We assume that P̄ and P have identical length and
are both parameterized by arc-length. Assume that each
point O of R has a unique closest projection on P. We
want a locally area-preserving homeomorphism H that
maps point O = P(s)+rN(s) to point P̄(s)+hN̄(s), where
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Figure 2: On the top (a), we show a texture region painted with an
axis-aligned checkerboard pattern along a straight spine curve P. Be-
low (b), we show a deformed version P̄ of the spine and the result of
a mapping where h = r. The squares of the checkerboard are colored
to indicate area preservation (more green), compression (more red),
or dilation (more blue). Below (c), we show the proposed corrected
mapping. At the bottom (d), we show the proposed corrected map-
ping while doubling the sampling density. Notice that this increased
sampling reduces area errors significantly.

N(s) is the normal to P at P(s) and N̄(s) is the normal to
P̄ at P̄(s). By locally area-preserving, we mean that any
subset Q of R has same area as its image H(Q).

The approach that we advocate here defines h in terms
of r and the curvature k(s) of P at P(s) and the curva-
ture k̄(s) of P̄ at P̄(s). For an exact solution h to ex-
ist, r must fall within a specific range defined by k(s)
and k̄(s). In Fig. 2, we compare this “fleshing” solution
to the common skinning solution with h = r. We also
discuss the computational and accuracy advantages of
the spine-aligned grid, as shown in Fig. 2, over an axis
aligned grid.

1.3. Generate contours for constant material removal

We are given the planar boundary P of a pocket to
be machined, and we want to compute a series, {O j},
of concentric variable-distance normal offset contours.
For each contour, we want to adjust the offset distance
locally, so that the area of a segment of the corridor be-
tween two consecutive contours is proportional to the
length of that segment. More precisely, consider an an-
imation that moves all points of O j along their normal
until they reach their offset point on O j+1. For any con-
nected subset S of O j, let u denote its length. Our objec-
tive is to ensure that the region swept by S during this

animation has area ur, where r is a given nominal depth.
This is important because NC machining is most effi-
cient when the cutter advances at constant speed (tan-
gentially along a contour Oi) and removes a constant
amount of material per unit of time [7]. Our solution
combines two steps: (1) a variable distance offset where
the local offset distance h is computed from the nominal
distance r and the local curvature k of O j using a simple
variation of the formulation discussed above, and (2) a
selective smoothing, which reduces the sharp features
introduced by step (1) and ensures that the curvature at
a point does not change sign during offsetting. In Fig. 3,
we compare constant distance offsetting, variable dis-
tance offsetting, and the proposed solution which com-
bines steps (1) and (2).

Figure 3: We show a series of contours produced by constant distance
offsetting (a), curvature-based distance offsetting (b), and curvature-
based distance offsetting with selective smoothing (c). The successive
constant distance offsets (a) do not preserve a constant area-to-length
ratio and produce self-intersections for larger offset distances. Suc-
cessive curvature-based offsets (b) preserve that ratio, but exhibit an
increasing amount of discontinuities where the curvature of the pre-
vious offset changes rapidly (we only render the first few contours).
The proposed combination of curvature-aware offsetting and selective
smoothing (c) produces concentric offset contours that are smooth and
approach a constant area-to-length ratio. The selective smoothing en-
sures that the curvature at each point maintains its sign or becomes
zero. Hence, the process converges towards a convex shape, as can be
extrapolated from the drawing.

1.4. Summary of contributions

The solutions to all three problems are based on
a curvature-based distance correction, which maps a
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nominal distance r to a distance h. In two dimensions,
assuming that k is the curvature, h is a specific root of

1
2

kh2 + h − r = 0 (1)

In three dimensions, assuming that g is the Gaussian and
m the mean curvature, h is a specific root of

1
3

gh3 + mh2 + h − r = 0 (2)

The derivation of these equations and their prior use for
constant area or volume offsetting is discussed in the
next section. Our contributions comprise the following:

1) To solve the first problem of constant distance off-
setting for a desired volume change, we generalize the
Steiner formula [8] for the volume change under con-
stant distance offsetting to non-convex solids as well as
to higher genus solids, and we describe an efficient im-
plementation. We also analyze the error sensitivity of
our formula, study the impact of sampling density on
its accuracy, and report the results on benchmark curves
and surfaces.

2) To solve the second problem of local area preser-
vation during skeletal bending, we have adapted the for-
mulation (Equ. 1) originally developed by Chirikjian [9]
for locally area-preserving bending. Chirikjian dis-
cusses divergence-free deformation for continuous
models. We explore its use for deforming discrete,
texture-mapped quads to follow the bending of a polyg-
onal spine. Specifically, we propose the use of a spine-
aligned grid, and argue its advantages over axis-aligned
grids.

3) To address the third problem of constant material
removal modeling, we build upon the solution proposed
by Moon [7], but show that it produces sharp discon-
tinuities of the offset curve near concave features. We
propose a novel selective smoothing technique which
eliminates these sharp features while preserving the cur-
vature sign between the original points and their offsets.

2. Prior Art

In this section, we discuss relevant prior work in
constant distance offsetting, variable distance offsetting,
volume correction, and skeleton-driven shape deforma-
tions.

2.1. Constant distance offsetting

The constant-distance offset (CDO) S r of a solid S
by distance r [10], also called dilation, is formulated as

the Minkowski sum [11] of S with a ball of radius r cen-
tered at the origin. It may also be expressed as the union
of all balls of radius r with center in S . S r contains all
points at distance r or less from S . Steiner [8] has de-
rived formulae for the area change and volume change
under constant distance offsetting for the special cases
of convex sets of genus zero. Here in Sec. 4 we prove its
generalization to non-convex solids and to higher genus
solids.

CDO operations are important in planning and sim-
ulating NC-machning processes [12], where they are
used to generate constant thickness layers of material
to be removed by successive machining passes, and for
creating fillets and blends [13] by offsetting the solid
and then its complement or vice versa. In 2D, CDO
preserves the domain of shapes bounded by piecewise-
circular curves [14]. In 3D, we obtain our approxi-
mation by offsetting each vertex by a constant distance
along an estimated vertex normal. Numerical and topo-
logical accuracy issues of CDOs of solids bounded by
triangle meshes and polyhedral surfaces have been in-
vestigated in various applications [12] [15].

2.2. Variable distance offsetting
Variable-distance offsetting (VDO) is specified by as-

signing a distance h(s) to each point P(s) of the base
shape P (curve in 2D or surface in 3D). Three differ-
ent interpretations of this specification have been com-
pared in [16]. The radial offset is the union of balls
(P(s), h(s)). The ball offset [17] is the union of balls
of diameter h(s) that are tangent to P at P(s). Finally,
the normal offset [1] is the union of all line segments
of length h(s) that are normal to P at P(s). In all three
cases, under sufficient assumptions on the smoothness
and curvature of P, there is a bijective mapping between
P and a portion of the boundary of the offset shape,
which may be formulated as an envelope of a set of line
segments or balls. (Note that each formulation imposes
a different set of constraints on the relation between the
offset distance function and the curvature of P [1].) The
shape and curvature of these envelopes may be com-
puted efficiently [16]. Here, we restrict our attention to
the normal offset, hoping that the other two interpreta-
tions will be investigated later. One issue addressed in
this paper is the computation of the offset distance field
h(s) that distributes the “invaded” space uniformly. Let
P be a surface in 3D. Let, Q be a subset of P, and R
be the region swept by Q during the offset. We want
to compute a variable offset distance function h(s) such
that the ratio r of R’s volume over the area of Q is a con-
stant. If P is a curve in 2D, r is the ratio of the area of R
over the arc-length of Q. This equi-volumetric offsetting
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has been investigated by Moon [7] [18] for NC machin-
ing, so as to ensure a constant material-removal rate,
rather than constant depth of removal. Moon has shown
that, in valid situations where the curvature is smaller
than some limit defined in terms of r, h(s) may be for-
mulated as the root of a quadratic equation, for the 2D
case, and of a cubic equation, for the 3D case. Specifi-
cally, in 2D, h is the root of 1

2 k(s)h(s)2 + h(s) − r = 0,
where k(s) is the curvature of P at P(s). In 3D, h(s)
is the root of 1

3 g(s)h(s)3 + m(s)h(s)2 + h(s) − r = 0
where g(s) is the local Gaussian curvature and m(s) is
the local mean curvature of P at P(s). These curvature
based distance functions have been studied by Hagen
and Hahmann as generalized focal surfaces [19] as a
tool for surface interrogation. We build our local off-
setting solutions to the volume compensation and to the
area-preserving bending on these equations.

2.3. Skeleton-driven deformations

Consider the planar shape S to be the union of an
infinite set of disjoint line segments intersected at their
midpoints by a continuous spine P. Let 2h(s) and a(s)
define the length of the line segment and its angle to
the tangent to P at P(s). Cavlieri’s principle [20] im-
plies that, when bending P, the area of the convex hull
of two infinitely close line segments remains constant
regardless of the shape of S , as long as we preserve
h(s) and a(s) and do not bend P(s) excessively (ensur-
ing that the radius of curvature at P(s) does not exceed
h(s)). Although this solution preserves the area of each
convex hull of consecutive two line segments, it does
not preserve the local area on each side of the spine, as
discussed in the introduction. Several approaches have
been proposed to maintain a constant local area of a re-
gion as its spine is bent. Chirikjian [9] has derived the
quadratic equation mentioned above by constraining the
Jacobian of the deformation to be 1, so as to make it lo-
cally area preserving. When the spine bend exceeds the
local limit, the normal offsetting is no longer appropri-
ate. More general techniques for skinning and fleshing
with locally-preserving bending have been proposed by
Rohmer and colleagues [21]. They adjust both the di-
rection and distance of the offsetting and solve for an
optimal solution that favors locality.

3. Curvature-based Offset Distance Computation

In this section, we discuss implementation and accu-
racy issues of computing the curvature-based offset dis-
tance. For implementation simplicity, we define a func-
tion f in 2D and in 3D, which returns the proper offset

distance, when it exists within the allowable range, or
the appropriate range bound otherwise. We use a sub-
script ( f2D and f3D) to distinguish the 2D and 3D ver-
sions of f . We also discuss how to select the proper
root in each case.

3.1. Function interface and capping
f2D takes as input the signed curvature k and and

the reference distance r respectively. The output h =

f2D(k, r) is the quadratic root −1+
√

1+2kr
k of Equ. 1 when

1+2kr > 0. Otherwise, f caps the value of h and returns
the limit −1/k so as to prevent a local self-intersection.

f3D takes as input the signed Guussian curvature g,
the mean curvature m and the reference distance r. The
output h = f3D(g,m, r) is the valid cubic root of Equ. 2.
Notice that if g = 0, then h is computed via the 2D solu-
tion discussed above, as f2D(2m, r). Otherwise, we need
to select the proper real root and to ensure that the solu-
tion is capped to an allowable bound. Moon [18] has de-
rived the existence condition and the monotonic region
where the valid root exists. In our implementation, we
use a change of variables: h∗ = h

r , g∗ = gr2 and m∗ =

mr. Then if 2
√

m∗2 − g∗ − m∗ > 3(m∗ −
√

m∗2 − g∗),
there is a unique positive real root in [0, 1√

m∗2−g∗−m∗
].

Otherwise, no valid real root exists and we output the
maximum offset distance that is free from a local self
intersection.

3.2. Error Sensitivities
Estimating curvature from a sampling of a smooth

curve will produce an incorrect offset distance. Below
we show that the error in h is a linear function of the
errors in the curvature estimation, both in 2D and in 3D.

Let εx represent a small variation in the variable x.
Assume that r is a constant. For 2D, we take the deriva-
tive of Equ. 1 and arrive at

h2

2
εk + khεh + εh = 0

From this, we conclude that εh is proportional (∝) to εk:

εh ∝ h2

1 + kh
εk

Similar for 3D, we take the derivative of Equ. 2 and ob-
tain

εh ∝
εgh3 + εmh2

1 + 2mh + gh2

Therefore, the numerical error in the output of f is linear
in the errors of its inputs when kh > 0 in 2D, or 2mh +

gh2 > 0 in 3D.
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3.3. Curvature approximation
Densely sampled polylines and polygonal meshes are

often used in modeling solids with smooth boundaries
whose parametric expression may not be conveniently
available. Hence, we adopt discrete formulas to evaluate
the curvatures.

3.3.1. Local curvatures
Let P denote a watertight quad or triangle mesh and

Pi a vertex of P. The local curvature at Pi can be eval-
uated from its one-ring neighbors {Q j}. In 2D, the dis-
crete curvature ki may be conveniently calculated by fit-
ting a parabola to Pi and its neighbors. In 3D, we use
the discrete formulas proposed by Meyer, et. al. [22].
Specifically, the local area Ai associated with Pi is ap-
proximated by the area sum of incident Voronoi cells.
The gradient of Ai with respect to Pi, also known as
the discrete Laplace Beltrami operator, has the follow-
ing closed form [23]:

∇Ai =
1
2

∑

j

(
PiQ j−1 · Q j−1Q j

|PiQ j−1 × Q j−1Q j|+
PiQ j+1 · Q j+1Q j

|PiQ j+1 × Q j+1Q j| )PQi

(3)
Then, the local mean curvature is approximated by a
scaled dot product of∇Ai with the unit normal at Pi. The
local Gaussian curvature is approximated by the angle
deficit at Pi [22].

3.3.2. Global curvatures
Let AP denote the total surface area of P. We refer

to the surface integral of Gaussian curvature divided by
AP as the global Gaussian curvature (gP) and the surface
integral of mean curvature divided by AP as the global
mean curvature (mP). The integrated Gaussian is intrin-
sic to P and equals 2πχP, where χP is the Euler charac-
teristic of P. (χP = V−E+F where V , E, F are numbers
of vertices, edges and faces.) Therefore,

gP =
2πχP

AP
(4)

The surface integral of mean curvature is related to the
bending energy [24], which we denote as EP. Note that
EP can be approximated by the scaled sum of |∇Ai| at
each vertex. Therefore,

mP =
EP

AP
(5)

In 2D when P denotes a Jordan curve, its integrated cur-
vature is intrinsic and equals 2π [25]. Let LP denote the
length of P. The global curvature of P, kP, is defined as

kP =
2π
LP

(6)

Note that a global curvature has the same unit as its local
counterpart.

4. Dilation with Prescribed Volume Change

Consider a 3D shape P with volume VP. We want
to compute O from P by a single step of dilation, so
that the enclosed volume is increased by a prescribed
amount ∆V . We first discuss methods that are not based
on curvature measures. Then we present our solution.

4.1. Uniform scaling

The work of Desbrun et. al. [23] introduces a simple
approach of rescaling P around its barycenter C by a
uniform amount s:

O = C + s(P −C) (7)

where s = 3

√
VP+∆V

VP
. Uniform scaling guarantees that the

enclosed volume is increased exactly by ∆V . However,
this approach generates unbounded Hausdorff error be-
tween O and P (Fig. 1).

4.2. Linearized solution

In contrast, when a constant distance normal offset by
a distance h is used, the Hausdorff error is exactly h (as-
suming that h is smaller than the least feature size of the
shape). When using a constant distance offset (CDO), to
increase the volume of a solid by ∆V , one must compute
the proper offset distance h. One approach [21] is to use
h = ∆V

AP
. We compare below this approximate solution

to the one proposed here.

4.3. Normal offset based on the global curvature

The correct solution defines h as the appropriate root
computed by f2D or f3D as explained earlier in Sec. 3.1.
We include below the derivation of this result.

4.3.1. 2D
Let P denote a Jordan curve of length LP. Let, k(s)

and N(s) be the signed curvature and the unit normal
of P at P(s). The curvature k(s) is the derivative of the
unit normal. Hence, we have the following expression
of the area increase ∆A associated with offsetting P by
a constant distance h:

∆A =

∫∫

γ∈[0,h]
|∂(P(s) + γN(s))

∂s
|dγds

= hLP +
h2

2

∫
k(s)ds

5



By the Total Curvature Theorem [25], we have
∫

k(s)ds = 2π

Therefore we arrive at,

π

LP
h2 + h − ∆A

LP
= 0 (8)

Hence to compensate for the area change ∆A, we need
to offset the curve P by a constant distance h computed
by h = f2D( 2π

LP
, ∆A

LP
). Or equivalently, h = f2D(kP,

∆A
LP

)
using the global curvature defined in Equ. 6.

4.3.2. 3D
Let P(u, v) denote a point on a surface P parameter-

ized by u and v. We derive the exact expression of the
volume increase when offsetting P(u, v) by a constant
distance h. Let m(u, v) and g(u, v) represent the local
mean and Gaussian curvature of P at (u, v). Since the
mean curvature is the divergence of the unit normal and
the Gaussian curvature is the determinant of its Hessian,
the volume increase ∆V can be expressed as follows:

∆V =

∫∫∫

γ∈[0,h]
|∇(P(u, v) + γN(u, v))|dγdudv

= h
∫∫

|∇P|dvdu +
1
2

h2
∫∫

∇ · Ndvdu

+
1
3

h3
∫∫

|∇N|dudv

= hAP + h2
∫∫

m(u, v)dudv

+
1
3

h3
∫∫

g(u, v)dudv

By the Gauss-Bonnet Theorem [25], we have
∫∫

g(u, v)dudv = 2πχP

where χP is the Euler characteristic of P which is 2 − g
for a genus-g surface. The other integral term is the total
integral of the mean curvature: EP =

∫∫
m(u, v)dudv.

Therefore, we arrive at:

2πχP

3AP
h3 +

EP

AP
h2 + h − ∆V

AP
= 0 (9)

Hence to increase the current volume by ∆V , we offset
P by h = f3D( 2πχP

AP
, EP

AP
, ∆V

AP
). Notice that the definition of

global curvatures in Equ.4 and Equ. 5, the solution can
also be written as h = f3D(gP,mP,

∆V
AP

).

4.4. Proof of minimizing Hausdorff error

Let P, O and Q either be regularized planar regions or
solids. Assume that O = Pd for some positive distance
d. (If instead we want a negative d, the argument below
will hold for the complements of P, O and Q and still
support our conclusion.) We will prove that ∀Q , O,
VQ = VO ⇒ H(Q, P) > H(O, P), where H defines
Hausdorff distance and VX denotes the area or volume
of X.

Assume that VQ = VO. First, we note that Q can-
not be a proper subset of O, otherwise we would have
VQ < VO. Second, we note that Q cannot contain any
point q outside of O, otherwise we would have the dis-
tance from q to P, d(q, P) > d (Since O includes all
points at distances less or equal to d from P) and hence
H(Q, P) > d. From these two observations (Q is not a
proper subset of O and Q is a subset of O), we conclude
that if Q , O then H(Q, P) > H(O, P). Hence, O is
Hausdorff distance minimized. �

4.5. Implementation

We have implemented the three volume correction
schemes (Uniform scaling, Linearized, and Curvature-
based solutions) on quad as well as triangle meshes. Our
implementation uses a Corner Table [26] representation
and the associated corner operators. The whole process
is only a few lines of code. First, to compute the global
mean curvature mP we sum the area gradient at each
vertex and divide it by 3 for triangle meshes or 2 for
quad meshes. Then, the normal at each vertex is the
weighted sum of the normals of the incident triangles
scaled by their areas. Then, we compute the surface area
AP of P (as the sum of triangle areas), the volume VP (as
a sum of signed volumes of the tetrahedron formed by
each triangle with the origin). For a quad mesh, we treat
each quad face as a bi-linear patch interpolating the four
face vertices. We compute the total volume and the to-
tal surface area as the sums of the sub-volume and the
sub-area associated with each bi-linear patch, using for-
mulae presented in [21]. The extraction of the proper
root of the cubic polynomial was discussed in Sec. 3.1.
Although we have not optimized the code, the whole
process of computing the corrected offset distance and
of performing the offsetting is instantaneous (it takes a
very small fraction of a second for all models tested).

We evaluate P’s barycenter C as the area-weighted
sum of geometric centers of all faces of P divided by
AP. The Hausdorff distance between P and O is approx-
imated by

max{max{d(p,O), p ∈ P},max{d(o, P), o ∈ O}}
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Figure 4: Steps of volume compensation through dilation. Left: origi-
nal control meshes of volume VS ; Center: fair and subdivided meshes
with volume VP; Right: meshes after dilation with volume VO

where d(x,Y) calculates the distance from a vertex x to
mesh Y .

4.6. Results
We present our experiment results on 11 meshes

shown in Fig. 5. In these examples, 9 (Cross, Holes,
Bunny, Horse, Donut, Spikes, Sphere-(coarse, fine)) are
obtained from coarse solids by Catmull [2] or Butter-
fly [27] subdivision and smoothing [3] steps shown in
Fig. 4. Mesh “Horse-noise” is obtained by adding ran-
dom noises to the subdivided horse model. We prescribe
the desired volume change ∆V , and want to offset P to
produce a solid O = Ph with volume VP+∆V . We report
in Tab. 1 the number of vertices nV , volume VP, area AP

for each mesh P. The volume after correction is denoted
as VO. It is not exactly VP + ∆V due to numerical errors.
We measure the discrepancies between VP + ∆V and VO

in terms of ε defined as follows:

ε =
|VP + ∆V − VO|

VP
(10)

Tab. 1 shows the errors of the linearized solu-
tion (εlinear) where h = ∆V

A and the errors of our solution
based on the global curvatures (εcurv.). The results show
that in general the curvature-based solution is about 3
times more accurate than the linearized solution. We
also report the Hausdorff error between P and O. For
meshes that contain parts that are long and thin, the
Hausdorff error (δscaling) produced by uniform scaling
is much larger than the Hausdorff error (δcurv.) produced
by our solution based on global curvatures. For spheres,
δscaling and δcurv. are roughly the same. We also observe
that for all models tested, repeating the offsetting with
the correct solution (Equ. 9) for h (each time using the
remaining volume error as inputs) three or four times
reduces the relative error to 0.00003% or less.

Figure 5: Mesh models used in our experiments: Cross, Holes, Bunny,
Horse, Donut, Spikes, Sphere-noise, Sphere, Sphere-fine, Fan, Horse-
noise

5. Spine Bending with Local Area Preservation

Volume and area preserving deformation are often
keys to simulations with physical realism. The funda-
mental idea for locally volume/area-preservation is to
make the deformation field divergence-free, which im-
plies that the Jacobian determinant is 1.

Here we consider the problem in 2D. The spine is
represented by a polygonal curve produced by subdivi-
sion or by a dense sampling of a smooth curve. Appli-
cations of bending curves range from rendering brush
strokes with variable thickness and textures [28] to im-
age and shape manipulation [29]. We notice that a
ribbon-style framework suitable for bending an open
continuous curve was first proposed by Alan Barr [30].
The framework provides an efficient method for a planar
deformation controlled by a skeletal curve. We present
below a locally area-preserving shape manipulation ap-
plication based on this framework.

5.1. Continuous model

We include here a derivation of Equ. 1 for bending
with a continuous curve. Given a skeletal curve which
we denote as P(s), a nearby point O is expressed as:

O(s, r) = P(s) + rN(s)
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Model nV VP AP εlinear εcurv. δscaling δcurv.

Cross 3198 2.15e7 7.05e5 2.5% 0.12% 12.5 2.8
Holes 1922 4.26e7 7.26e5 1.9% 0.11% 14.8 5.7
Bunny 1522 5.19e6 1.73e5 2.4% 0.065% 6.3 2.9
Horse 4002 8.29e6 3.12e5 2.95% 0.21% 12.3 2.5
Donut 256 1.43e7 4.03e5 2.2% 0.18% 7.4 4.8
Spikes 3842 7.69e6 5.165e5 3.20% 0.65% 17.6 1.4

Sphere-coarse 194 3.01e7 4.73e5 3.1% 0.62% 5.8 5.7
Sphere 770 3.08e7 4.78e5 3.8% 0.83% 6.4 6.4

Sphere-fine 3074 3.08e7 4.78e5 3.9% 1.0% 6.4 6.4
Fan 25895 5.022e7 1.07e6 2.2% 1.3% 8.7 4.5

Horse-noise 4002 1.21e7 4.69e6 2.7% 0.96% 11.5 2.3

Table 1: Mesh statistics and results of different volume-correction schemes corresponding to the models in Fig. 5

here r is the distance from O to its orthogonal projec-
tion on P. We denote the skeletal curve after length-
preserving bending as P̄ with its unit normal and curva-
ture denoted as N̄ and k̄. The deformed position Ō is
then:

Ō(s, r) = P̄(s) + hN̄(s)

Setting h = r produces an approximate solution as pre-
viously discussed in Sec. 1.2. However, the deformation
is not locally area-preserving as the local rate of expan-
sion varies depending on the curvatures at P(s) and P̄(s).
Hence, h , r. By the chain rule, we have:

∂Ō
∂O

=
∂Ō

∂(s, h)
∂(s, h)
∂(s, r)

∂(s, r)
∂O

By setting the determinant of the above transformation
to 1, we have:

dh
dr

(1 + hk̄(s))(1 + rk(s))−1 = 1

Therefore,

k̄(s)
2

h2 + h − (r +
r2

2
k(s)) = 0

The solution for h is a curvature-based distance which
can be computed by h = f2D(k̄(s), r +

k(s)
2 r2).

5.2. Discretization

To bend an image, the designer specifies the initial
and final spine curves. We use a grid of quads and paint
the bent image as a texture onto the deformed quads.
One could do this using an axis-aligned grid, but such an
approach has two drawbacks: (1) there is an expense of
computing the closest projection of each grid point onto
the initial spine curve, and (2) aliasing artifacts occur

Figure 6: The user draw a initial curve (left) over an image and a de-
formed curve (right). The deformed image is rendered as a texture
mapping over the spine-aligned grid. We preserve the length of the
spine by keeping the number of samples and the distance between
consecutive samples as constants, when sampling from a curve ma-
nipulated by the user.

when the spine curve is not sufficiently sampled, as sev-
eral grid points that would project on different points of
a continuous spine may have, as closest projection, the
same vertex of a polygonal approximation. To allevi-
ate these drawbacks, we advocate using a spine-aligned
grid, as shown in Fig. 2. For simplicity, we sample the
smooth spine curve so that all edges of its polygonal
approximation have the same length. We generate the
initial grid by estimating the normal at each vertex Pi of
the initial spine (as being orthogonal to the line passing
by its neighbors) and by generating offset points in both
directions by jr, with j being an integer in some desired
range. At each such grid-point, we record its coordi-
nates in the image as texture coordinates. To display the
deformed image, we use the same process to establish
the normal at each vertex of the bent spine, and gener-
ate the corresponding grid points, but instead of offset-
ting them by jr, we offset them by f2D(k̄, jr + k

2 ( jr)2),
where k and k̄ are the local curvatures before and after
bending. Then we render the grid quads with texture
mapping. An example of this bending process is shown
in Fig. 6.
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Figure 7: A family of curvature-based distance offsets. Notice that
the offset curve may contain sharp pointy protrusion at concave side
of the spine curve when r approaches the limit − 1

2k(s) .

5.3. Limitations

As the half-width of the grid approaches the valid-
ity limit discussed above, the corrected offset distance
increases rapidly, creating a spike, as shown in Fig. 7.
Hence, in practice, we must limit the width of the area
of the picture upon which we operate or the amount of
curvature change at every point between the initial and
final spines. Specifically, we limit |k| to [0, 1

2r ] where k
is the local curvature and r is the half-width of the grid.
In practice, to avoid spikes, we limit |k| to [0, 1

2.5r ].

6. Constant Material Removal Rate

6.1. Machining

We recall the quadratic formula proposed by Hwan
Pyo Moon [7] in the context of machining:

1
2

k(s)h(s)2 + h(s) − r = 0

where k(s) is the local curvature of the progenitor curve
P, h(s) is the depth of cut, and r is the material removal
rate to feedrate ratio. Moon argues its importance in
NC milling with constant power consumption. General
milling tools have sufficient degrees of freedom which
allow them to follow arbitrary planar paths. One of the
challenges is to define a tool path that lead to constant
material removal rate in milling for a target shape mod-
eled by P. Since we want to keep the translational speed
of the milling tool as constant as possible, the removed
area per unit length should also be constant in order to
achieve stable power consumption. Let this constant be
r, solving the above equation gives the offset distance
that defines the tool path with removed area per unit
length equal to r.

6.2. Successive offsets

In practice, the tool path could consist of a set of con-
centric offsets from P. They form a set of successive

Figure 8: A set of successive curvature-based distance offsets. Left:
direct offset curves without fairing; Right: the same set of offsets with
selective smoothing

offsets {O j}, j = 1, 2, . . . from P:

O1(s) = P(s) + f (kP(s), r)NP(s)

O j+1(s) = O j(s) + f (kO j(s), r)NO j(s)

6.3. Loss of smoothness
It is known in differential geometry that the curva-

ture transformation kP(s) is a second-order operator on
the parametric curve P(s). Naturally, the curvature-
based distance function f (kP(s), r) is second order as
well. Hence only Cd−2 continuity is observed in the off-
set when P(s) is Cd continuous. To verify this loss of
smoothness when P is approximated by dense polyloop,
we show a set of successive offsets on a dense polyloop
P produced by the J1.5 subdivision scheme [31] whose
limiting curve is of C4 continuity.

Fig. 8 (Left) shows the result of directly applying f2D

to discrete curvatures evaluated at points of P and {O j}.
The first two offset curves appear smooth. However,
the third appears jaggy and the fourth contains self-
intersections. These discontinuities result from large
differences of curvature estimates between neighboring
vertices. Variances in evaluating the discrete curvatures
could cause the offset to contain unwanted local convex-
ities and concavities, and further increase the curvature
variances in the offset curve. Therefore, we propose be-
low an iterative algorithm, selective smoothing, for suc-
cessively generating visually smooth offset curves.

6.4. Selective Smoothing
We observe that changes in the sign of the curva-

ture are undesirable in generating a smooth offset curve.
Hence, our smoothing strategy focuses on producing a
curvature-compatible offset curve, where a point with
non-negative curvature is mapped to a offset point with
non-negative curvature, and the same for non-positive
curvature.

Selective Smoothing is similar to the Laplacian
smoothing except that only points with non-compatible
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Figure 9: The 1st, 3rd, 6th, 12th, 14th iteration of selective smoothing. Points with incompatible curvatures are shown in red.

curvatures are subject to the operation. It consists of two
steps in each iteration (Fig. 9): Select and Smoothen.
Let ko

i denote the discrete curvature at the i-th vertex on
the offset curve O; ki and Ni denote the signed curvature
and the unit normal at P.

• Select: Check each vertex Oi in O and put i into a
smoothing list L if ki and ko

i are of different signs.

• Smoothen: Compute a list of Laplacian vectors
{Vi} at vertices of L; Move each vertex of L along
the unit normal Ni by the dot product of Vi and Ni.

Typically, as shown in Fig. 9, there are only a few in-
compatible points along the initial offset curve. As
these are made compatible by a step of the selective
smoothing, some of their immediate neighbors may be-
come incompatible. However, the process converges
rapidly. Fig. 8 (Right) and 3 (Right) show results of
applying selective smoothing: in Fig. 8, unwanted noise
is smoothed out while the rest of a curve is not modified;
in Fig 3, we are able to generate a large series of consec-
utive offsets using this combination of curvature-based
distance and selective smoothing.

6.5. Discussion and limitations

Consider now selective smoothing as a separate pro-
cess. It could be used to smoothen a polygonal curve so
that each vertex is either flat (has zero curvature) or has
a curvature with a prescribed sign. Selective smooth-
ing identifies incompatible vertices—those where the
curve makes the wrong turn—and moves them to the
average of their immediate neighbors. When a chain
of incompatible vertices has the same prescribed cur-
vature sign, repeating the process is essentially equiva-
lent to Laplacian smoothing and converges to a straight
line. However, selective smoothing can fail if the curve
becomes self-crossing. When used as a smoothing to
curvature-based normal offsetting, we restrict the mo-
tion of each vertex to be along the normal to the original
curve. Furthermore, the extent of that motion is con-
strained by the cap on the corrected offset value (|h| is
confined to [0,−1/k] if k < 0). Hence, allowable vertex

Figure 10: The yellow vertices are having compatible curvature signs
with the green vertices on the black curve.

motions cannot create local loops. Therefore, we con-
jecture that our Selective Smoothing process will con-
verge to a compatible curve. Of course, the offset curve
may exhibit global self-intersections, which can be de-
tected and should be prevented or resolved by trimming,
if topological changes are desired. But such a global
post-processing is necessary regardless of the smooth-
ing step.

Finally, due to the discretization and numerical errors
when evaluating k, an offset contour may still contain
a local self-intersecting loop (Fig. 10). To detect these
situations, we detect self-crossing along the offset curve
and flag, as incompatible, all vertices between two con-
secutive self-crossing points. This heuristic works cor-
rectly only when the loops are isolated.

7. Discussion

This section discusses the impact of sampling den-
sity on the accuracy of locally area/volume distribution
computed by the curvature-based normal offset. We
compute variable distance normal offset from prototyp-
ical curve and surface patch (denoted as P). In order to
show the error on both local and global scales, we di-
vide P into a constant number of portions and define the
following measures:

In 2D, we compute the sub-area ak swept by offset-
ting the kth portion of P with length lk. The local rel-
ative error for each portion is defined as δk = ak

lkr − 1.
We report the maximum absolute value, δmax, and the
mean absolute value, δmean, of the local relative errors
for all portions of P. We also report the global relative
error as δglobal =

∑
k ak

r
∑

k lk
− 1. δglobal measures the relative

difference from the total-increased-area to perimeter ra-
tio from the user-input reference distance r. In 3D, we
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Figure 11: Dependence of the local and the global error on sam-
pling density: (a) finely sampled curve that consists of 256 points.
(b) coarsely sampled curve that consists of 32 points.

Figure 12: Dependence of the local and the global error on mesh res-
olutions

define similar measures which we use to analyze the er-
rors associated with different types of surface patches.
Fig. 11 shows values of δmax, δmean and δglobal at 5 dif-
ferent sampling densities of a polygonal curve. Both the
local and the global relative errors converge to zero as
the subdivision depth increases. For example, the rela-
tive errors are less than 0.5% when there are 256 sam-
ple points on P. Fig. 12 shows values of δmax, δmean and
δglobal at different subdivision levels of bi-cubic surface
patches. We collect statistics from three types of surface
patches to avoid biases. Again, both the global and the
local relative errors fall quickly as the sampling density
increases. The relative errors are less than 0.5% when
there are 529 sample points on each surface patch.

These results show that in general, the accuracy of
even-area/volume distribution can be improved by in-
creasing the sampling density.

8. Conclusion

In this paper, we have presented our study and im-
plementation on the curvature-based offset distance for
several applications. Specifically, we present a simple
formulation of the offset distance and discuss its accu-
racy and smoothness, when computed on discrete mod-
els. We provide an exact formulation of the offset dis-
tance for adjusting the offset of 3D shapes by a constant
distance offset. Our solution generalizes prior art which
was limited to convex, zero-genus shapes. For bend-

ing images, we propose the use of an axis-aligned grid
and the formulation of the offset mapping between two
curved spines. Finally, for machining, we propose com-
bining curvature-based local offsetting with an iterative
selective smoothing process.
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Figure 1: (1) Original bunny and the initial spine. (2) Result of bending the spine obtained using the standard skinning without
volume-preserving correction for which the total volume change is 9%. (3) (4) (5) are the results produced by our three fleshing
solutions: radial, normal, and binormal, for which the total volume change (due to sampling and round off errors) is less than
0.3%

Abstract
Several design and animation techniques use a one-dimensional proxy C (a spine curve in 3D) to control the defor-
mation or behavior of a digital model of a 3D shape S. We propose a modification of these “skinning” techniques
that ensures local volume preservation, which is important for the physical plausibility of digital simulations.
In the proposed “fleshing” techniques, as input, we consider a smooth spine C0, a model S0 of a solid that lies
“sufficiently close” to C0, and a deformed version C1 of C0 that is “not overly bent”. (We provide a precise char-
acterization of these restrictions.) As output, we produce a bijective mapping M, that maps any point X of S onto
a point M(X) of M(S). M satisfies two properties: (1) The closest projection of X on C0 and of M(X) on C1 have
the same arc length parameter. (2) U and M(U) have the same volume, where U is any subset of S. We provide
three different closed form expressions for radial, normal and binormal and discuss the details of their practical
real-time implementation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric transformations F.2.2 [Theory of Computation]: Nonnumerical Algorithms and
Problems—Geometrical problems and computations

1. Introduction

Often, the design of a three-dimensional model or of its ani-
mation involves bending elongated parts. Models of humans
and of various animals are often defined in terms of an artic-
ulated skeleton with a few rigid bones connected at (possibly
spherical) joints. As the joint angles change, points on the
surface or inside the model are moved so as to preserve their
relative position with respect to nearby bones. Such “skin-

ning” techniques typically use the arc-length of the closest
projection onto individual bones to define relative coordi-
nates and track bone twists (around the bone axis) to fully
define the new location of a point after skeletal bending.
Points close to a joint may project on more than one bone.
The displacements suggested by these different bones are of-
ten blended using weights and linear combinations of loca-
tions or weighted combinations of rigid motions [LCF00].

c© 2013 The Author(s)
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Successful techniques have been proposed to increase
physical realism of the skin deformations near the joints, so
as to more accurately reflect the behavior of skin during the
bending of a human elbow [KCZO07]. Some strive to pre-
serve the total volume of the solid near the joint. Other strive
to preserve the volume of each slice by possibly tilting the
cross-sections [RHC08].

We focus here on deformations that follow the gentle
three-dimensional bending of a “spine” that is a smooth
curve. Such a tool seems appropriate for bending models
of tubes, hoses, wires, ducts, and for approximating the
spinal bending of vertebrates (reptiles, fish), and the bend-
ing of muscles with no skeletal support, such as mammalian
tongues, elephant trumps, octopus arms, or nautilus tenta-
cles. Although such “spine-driven bending” may not be suf-
ficient to model exactly the physically correct behavior of
these vertebrae and muscles, it provides an important tool
that facilitates the design of useful approximations of their
behavior and may have computational advantages over more
expensive finite element simulations.

Our main contribution is to propose an explicit mathe-
matical model of spine-driven bending that preserves local
volume exactly. By “local” we mean that any solid por-
tion of the initial shape preserves its volume during bend-
ing. This objective is more challenging than the preservation
of the overall volume (which may for example be achieved
by a global scaling or constant distance offsetting [ZR12])
and the preservation of the overall volume of each arbi-
trary cross-sectional slice using an extension of the Cava-
lier’s Principle [HS97]. Unfortunately, such global or per-
slice volume preservation approaches do not provide a vol-
ume preserving mapping (homeomorphism) from the initial
shape to the final shape. Hence, in these prior approaches,
either it is not clear where exactly in a slice a particular
chunk of muscle of the initial shape will end up in the bent
model, or, when an exact mapping is defined, the volume of
the chunk is not preserved.

When the shape is planar and the bending is in that plane,
the 2D problem amounts to preserving the local area. An ex-
act solution to local area preserving bending in 2D has been
proposed in [ZR12]. It is based on a local correction, which,
after the standard bending, adjusts the normal offset (from
the spine) of a point based on the curvatures of the initial
and the bent versions of the spine at the corresponding (clos-
est projection) point. Our contribution is to extend this prior
2D solution to 3D, where the spine is a possibly non-planar
curve and where the goal is to preserve the local volume in-
stead of the area. The extension to 3D is far from trivial.
As illustrated in Fig. 2, the solution proposed in [ZR12] is
only valid for a point X0 that lies in the osculating plane of
the closest projection Q0 of X0 on the initial spine C0. The
solution proposed here does not have this limitation.

Q0X0 O0

Q1X1 O1

Q0 O0

O1

X0

X1

Q1

Figure 2: On the left, we show the planar bending proposed
in [ZR12] where Q0 is the closest projection of X0 onto spine
C0, Oi is the curvature center of Ci at Qi. Xi is restricted to
lie on the line passing Oi and Qi. On the right, we show the
3D version of this problem, where X0 is no longer restricted
to lie on the line through O0 and Q0. It can be anywhere on
the cross-sectional plane orthogonal to C0 at Q0.

1.1. Problem statement and our solutions

The designer starts with a shape S0 in 3D. Our solution is
a mapping from a subset of three-space to another and, as
such, it operates on any shape (point cloud, bundle of curves,
surfaces, solids, meshes, or cell complexes). Still, because
our focus is on volume preservation, for clarity, we say that
S0 is a solid.

The designer first specifies an initial spine C0. The spine
is a smooth curve in 3D that may pierce the solid S0 or not.
In fact, an important benefit of our solution is that the spine
may be positioned fully outside of the initial solid. Then the
designer specifies a new (“bent”) version C1 of the spine.

We restrict our attentions to formulations that are defined
by a mapping M which maps each point X0 of S0 to its image
X1 = M(X0) in S1. We say that M is a “fleshing” if it satisfies
the following conditions:

1. M is fully defined by C0 and C1, and hence independent
of S0. This is essential in applications where different ver-
sions of S0 may be used with different resolutions or lev-
els of detail.

2. M is an homeomorphism between S0 and S1. This is im-
portant because we want the mapping to be invertible:
M−1(X1) = X0, where M−1 is defined by the initial spine
as C1 and the final spine as C0 in M.

3. M maps C0 to C1 (i.e., M(C0) = C1). The spines can be
adjusted precisely by the user and a solution that ignores
such a constraint may be surprising and unnatural.

4. M preserves the arc length along the spine of the clos-
est projection (i.e., s0 = s1, where si (i = 0,1) is the arc-
length parameter of the closest projection of Pi onto curve
Ci.) This constraint restricts the mapping to respect cross-
sections. Although this constraint seems natural, it may

c© 2013 The Author(s)
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not be physically correct for some materials that are ca-
pable of stretching along the spine [ACWK04]. Neverthe-
less, this constraint is key to the effectiveness of our so-
lution and a proper assumption if the spine is rigid (only
capable of bending and twisting, but not stretching).

5. M preserves volume locally (i.e., vol(U) = vol(M(U))
for any subset U of S0). This is important for the physical
plausibility of digital simulations, especially when they
involve interactions between evolving solids (swimming
creature) and surrounding, incompressible fluids.

1.2. Contributions

We propose three different fleshings that satisfy all of the
constraints defined in the previous subsection. We call them
“radial”, “normal”, and “bi-normal”. We provide the explicit
and mathematically exact expression for each one of these
fleshings and explain its derivation.

During interactive manipulation or animation, these flesh-
ings may be computed in real time, at each frame, and ani-
mated as the user manipulates the spines. Hence, we advo-
cate their use for gaming and medical simulations where live
animation of bending shapes are desired.

Our three solutions produce results that are qualitatively
different. To clearly illustrate these differences and help the
reader decide which one is appropriate for a particular ap-
plication, we show in Fig. 4 5 comparisons of their effects
when S0 is a tube or extruded cross-section around C0. We
also show in Fig. 1 7 6 8 their effect on a solid bounded by
an arbitrary triangle or quad meshes. We require that C0 and
C1 be smooth. We provide, for each fleshing, the precise for-
mulation of a valid space in which S0 must be contained for
M to exist as a valid fleshing.

2. Prior Art

The basic deformation operations proposed by Barr [Bar84]
extend the conventional operations of affine transformation
and CSG to include planar curve-based bending, which pre-
serves the normal offset distance from the spine curve. The
resulting mapping is not locally volume preserving as there
are local expansion on the convex side and contraction on the
concave side of the bent spine. To address this shortcoming,
Chrikjian [Chi95] presents a mathematically precise, closed-
form solution: for locally volume preserving bending in 2D,
the offset distance is computed as a root of a quadratic equa-
tion with curvature-based coefficients. This variable offset
distance allows the shape in the concave side of the spine to
grow in the normal direction in order to compensate for the
area loss. Moon [Moo08] derives the same quadratic formula
for milling with constant material removal rate.

In character animation, Lewis et al. [LCF00] propose gen-
eralized forms of skeleton-driven deformations as scattered
interpolations. Kavan and colleagues [KCZO07] present the

dual quaternion blending as an effective approach to pre-
serve the skinning mesh’s rigidity and roughly its local
volume around the joint. Constant volume deformations
are driven by divergence-free vector field of the boundary
points as shown in the work of von Funck et al. [vFTS06].
Angelidis and Singh [AS07] present the computation of
divergence-free vector fields induced by skeletal motion.
Their framework requires time integration as physically
based rigging [CBC∗07] and may have computational dis-
advantages for high resolution meshes. Rohmer and col-
leagues [RHC08] compute the offset distance scaled by the
skinning weight based on affinity and bone-length. To avoid
self-intersection, they detect if an offset point is within its
region determined by automatic segmentation. Their subse-
quent work [RHC09] allows the user to specify the locality
of the compensation through 1D profile curves that represent
isotropic inflation, bulging, or rippling effects.

A classic theorem due to Steiner [Ste40] establishes the
relationship between the differential properties of the surface
and the volume enclosed. Thus, if we wish to preserve the to-
tal volume, we can grow or shrink the shape uniformly (via
constant distance normal offsetting rather than global scal-
ing) in one step (without iteration) [ZR12]. Note that this
approach minimizes Hausdorff error and may hence be pre-
ferred over global rescaling [DMSB99]. It provides an more
efficient algorithm for preserving the total volume of a solid
undergoing free-form deformation [HML99], or for com-
pensating the volume change due to advection [KLL∗07].
To preserve the details of a shape during deformation, one
may use registration with the extracted skeleton [STG∗97],
or with a lower level subdivision model or base surface.
Botsch and Kobbelt [BK03] propose to keep the displace-
ment volumes locally constant through relaxation during a
deformation of the base surface. Moon [Moo09] presents a
closed-form solution for the variable offset distance from a
surface that preserves the local volume.

3. Preliminaries

3.1. Locally Volume-preserving Mapping

We consider a bijective mapping M : X0 → X1 that maps
any point X0 = P0(x0) onto X1 = P1(x1), where P0 and P1
are themselves mappings from local parameters x0 and x1
onto Cartesian space. (We use P−1 to denote the inverse of
a mapping P). The local parameters can be the arc length,
radial offset distance and the angle between the offset di-
rection and the Frenet normal. The mapping M is volume-
preserving (i.e. divergence-free) if the Jacobian determinant,
det(J(M)), equals 1 [Chi95]. We compute the Jacobian of M
by the following equation:

J(M) =
∂X1
∂X0

=
∂P1
∂x1

∂x1
∂x0

∂x0
∂P0

. (1)

c© 2013 The Author(s)
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Figure 3: Left: skinning according to the Frenet frame on a
trefoil knot (top) and a helix (bottom). Right: skinning using
the normal propagated frame is twist-minimized.

3.2. Frenet versus twist-compensated local frames

In order to perform skinning, one computes the local frame
F0 of C0 at the point C0(s) that is closest to X0, registers X0 to
F0, which amounts to computing the local coordinates, and
then computes the local frame F1 of C1 at the point C1(s)
and constructs X1 from C1(s) using the local coordinates.
Typically, we select frames that are aligned with the tangent
to the spine. Hence, we pick T0(s) as the tangent to C0 at
C0(s) and T1(s) as the tangent of C1 at C1(s). The remaining
issue is how to determine the other two basis vectors, or their
twist around the tangent. A natural candidate for the local
frame is the Frenet frame {T (s),N(s),B(s)} at C(s) where
N(s) and B(s) are the normal and binormal. By Frenet-Serret
theorem [dC92], the derivative of the Frenet frame at C(s) is
related to the frame itself through the curvature κ and the
torsion τ at C(s),




T ′(s)
N′(s)
B′(s)


=




0 κ 0
−κ 0 τ
0 −τ 0






T (s)
N(s)
B(s)


 . (2)

Although the Frenet frame provides a convenient local frame
along the curve, it is not appropriate as the tool for skinning,
because it contains undesired twists, as shown in Fig. 3 (left).
For example, the Frenet frame has an orientation discontinu-
ity along a piecewise circular curve [RR87] at the C1 contin-
uous junction between two adjacent, but not coplanar circu-
lar arcs.

To address this problem, we use a “twist-compensated lo-
cal frame”, as shown in Fig. 3 (right). Its rotation with re-
spect to the Frenet frame is defined by the integral of the tor-
sion [Sal] [Far03]. We construct the twist-compensated nor-
mal I(s+ ds) at C(s+ ds) by projecting I(s) to the normal
plane of C(s+ ds). Therefore, given an initial normal I(0),
the twist-compensated normal I(s) is obtained by propaga-
tion from I(0). Then for each point X0 of S0, we register it

with the twist-compensated frame W0(s) = {I0(s),J0(s)} on
C0(s).

3.3. Overview of the fleshing algorithm

We are given a solid S0, an initial spine C0, and a final spine
C1. We are also given an initial normal vector I0(0) to C0 at
C0(0) and an initial normal vector I1(0) to C1 at C1(0). Al-
ternatively, we compute I0(0) and I1(0) automatically, using
an agreed upon rule for generating a vector normal to a tan-
gent direction, and let the designer control the global twist
angle w which we use to adjust I1(0) by rotating it around
the tangent to C1 at C1(0). We assume that each point of S0
has a unique closest projection on C0 and that C1 satisfies
our validity conditions.

We compute the bent version S1 of S0 by applying a flesh-
ings to every vertex or control point X0 of S0 to obtain its im-
age X1 =M(X0). Our approach involves the following steps:

1. Spine preparation: Compute parameter s such that Q0 =
C0(s) is the closest projection of X0 onto C0, and Q1 =
C1(s). The corresponding Frenet frame and curvature at
Qi (i = 0,1) are Fi = {Ni,Bi} and ki; the corresponding
twist-compensated frame is Wi = {Ii,Ji}.

2. Unbending: Compute Xu, the unbend mapping of X0 by
applying one of our unbend fleshing mappings.

3. Rotation: Compute Xr from Xu by applying a change of
basis from Q0,W0 to Q1,W1 so that Xr represents the un-
bend point in the frame of C1.

4. Bending: Compute X1, the bending mapping of Xr by ap-
plying one of our bending fleshing mappings.

We give the derivation and implementation of the three flesh-
ing mappings in Sec. 4.

3.4. Validity conditions

To express the validity conditions under which our approach
produces a fleshing, we define a valid space S(C0,C1) which
must contain S0. To do so, we define the “reach” R(C) of a
curve C as the locus of all points that have a unique nor-
mal projection onto that curve. The reach may be com-
puted as the space obtained by radially inflating the curve
at each point and in all orthogonal directions until we reach
the corresponding curvature axis (which is the axis of the
osculating circle). We define S(C0,C1) as the intersection
R(C0)∩M−1(R(C1)) of the reach of C0 with the pre-image
of the reach of C1. In Sec. 4, we provide explicit formulae
for testing, during unbending and bending whether a point
X0, is in the valid space.

4. Fleshings

To simplify their formulation, we express each one as a com-
position of unbending which straightens C0 with a subse-
quent bending to C1.

c© 2013 The Author(s)
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4.1. Radial Fleshing

Radial fleshing transformation is denoted by Mr. We start
with the point X parameterized by (s,r,θ). s is the arc length
parameter of the closest projection C(s) of X onto C. r and θ
are the polar coordinates of X on the normal plane of C(s):

X = P(s,r,θ) =C(s)+ r cosθN(s)+ r sinθB(s).

We take the derivative of X with respect to its parameters
and substitute T ′, N′ and B′ by using Frenet-Serret equa-
tion (Eq. 2), and reduce the result to

∂X
∂(s,r,θ)

=




(1−κr cosθ) −τr sinθ τr cosθ
0 cosθ sinθ
0 −r sinθ r cosθ






T (s)
N(s)
B(s)


 .

(3)
Therefore, we have:

det(
∂X

∂(s,r,θ)
) = r(1−κr cosθ). (4)

In Mr : X0 → X1, we assume that only the radial offset dis-
tance r is updated from r0 to r1 while other parameters re-
main the same. We solve for r1 under the constraint that
det(J(Mr)) = 1. We next show that there exists an closed-
form solution for r1, and hence an analytic solution for Mr.
Specifically, from Eq. 1 we have:

J(Mr) =
∂X1

∂(s,r1,θ1)

∂(s,r1,θ1)

∂(s,r0,θ0)
(

∂X0
∂(s,r0,θ0)

)−1. (5)

Given Eq. 4, we compute the determinant of the Jacobian in
Eq. 5 as:

det(J(Mr)) = det(
∂X1

∂(s,r1,θ1)
)

dr1
dr0

/det(
∂X0

∂(s,r0,θ0)
)

=
r1(1−κ1r1 cosθ1)

r0(1−κ0r0 cosθ0)

dr1
dr0

.

In order to let det(J(Mr)) = 1, we solve the following ODE:

r1dr1−κ1r2
1dr1 cosθ1 = r0dr0−κ0r2

0dr0 cosθ0,

and integrate from 0 to ri on both sides of the above equation
to obtain:

− 2
3

κ1 cosθ1r3
1 + r2

1 =−2
3

κ0 cosθ0r3
0 + r2

0. (6)

Therefore, r1 is a cubic root of Eq. 6 with coefficients spec-
ified by r, κ0, κ1 and cosθ. The solution provided by Eq. 6
assumes that the bending (change of curvature) does not
change the local Frénet frame. To support more general
bending, as explained in Sec. 3.3, we split the fleshing into
several steps which include unbending (locally at C(s), the
spine becomes a straight line) and bending (the spine be-
comes curved again with the new curvature and normal).
Here, we include the formulae for the unbend and bend map-
pings.

Radial Unbending: We first assume that C0(s) is straight-

ened into a line and solve for a temporary value r∗:

r∗ = r0

√
1− 2

3
κ0 cosθ0r0. (7)

In order for r∗ to exist, 2
3 κ0 cosθr0 < 1. As cosθ varies in

[−1,1], an sufficient condition for r∗ to exist is |κ0r0| ≤ 3
2 .

Radial Bending: We then bend the straight spine into C1
and solve for r1 using r∗:

− 2
3

κ1 cosθ1r3
1 + r2

1 = r2
∗. (8)

We normalize the unknown and the coefficients in Eq. 8.
Specifically, let λ = r1

r∗ and α =− 2
3 k1r∗ cosθ, then Eq. 8

becomes αλ3 +λ2 = 1. Let f (λ) = αλ3 +λ2− 1, which
has two local extrema (minimum at λ1 = 1 and maximum
at λ2 = − 2

3α ). If α > 0,λ2 < 0, then f (0) f (1) < 0 and
f ′ > 0 ∈ [0,1], and hence there exists a valid solution in
[0,1]. If α > 0,λ2 > 0, then a valid solution exists only
if f (λ2) > 0, or equivalently α2 < 4

27 . Again since cosθ
varies in [−1,1], an sufficient condition for r1 to exist is
|α|< 2

3
√

3
, or

|κ1r∗| ≤ 1√
3
, (9)

and when κ1 reaches this curvature limit, r1 =
√

3r∗.

Fig. 4 illustrates the bending of a straight spine into a cir-
cular arc with length preservation. Fig. 4 (a) is the original
spine with two layers of cylindrical tube surfaces. Fig. 4 (b)
shows the application of Radial Bend to the original tube.
Intuitively, the radial distance increases for points on the in-
ner side of the curved spine in order to compensate for local
compression. Excessive bending leads to self-intersection of
the tube surface and the curvature limit in Eq. 9.

4.2. Normal Fleshing

Here, we define the normal fleshing Mn. We consider ex-
pressing a point X in the local Frenet frame as follows:

X = P(s,x,y) =C(s)+ xN(s)+ yB(s).

We take the derivative of P with respect to its parameters and
substitute the derivatives using Eq.2:

∂X
∂(s,x,y)

=




(1−κx) −τy τx
0 1 0
0 0 1






T (s)
N(s)
B(s)


 .

Therefore,

det(
∂X

∂(s,x,y)
) = 1−κx.

During normal fleshing, we change the parameter x from
x0 to x1 while keeping s and y constant. Given κ0, κ1, s, y
and x0, we solve for x1 under the constraint det(J(Mn)) = 1.
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Specifically, we have:

det(J(Mn)) = det(
∂P1

∂(s,x1,y)
)

dx1
dx0

/det(
∂P0

∂(s,x0,y)
)

=
(1−κ1x1)dx1
(1−κ0x0)dx0

.

Setting det(J(Mn)) = 1 gives that:

dx1−κx1dx1 = dx0−κ0x0dx0.

Integrate on both sides of the above equation and we have:

x1−
1
2

κ1x2
1 = x0−

1
2

κx2
0. (10)

Therefore, x1 is a quadratic root of Eq. 10 with coefficients
specified by x0, κ0, κ1.

As for Normal Fleshing, Eq. 10 is limited to cases where
the local curvature is changed, but the Frenet frame remains
constant. To support more general fleshing, as explained in
Sec. 4.1, we provide below its decomposition into normal
unbending and bending maps, which may be combined with
the twist-compensated rotation, as discussed in Sec. 3.3. To
solve x1, we break Eq. 10 into two steps:

Normal Unbending: Assume that C0(s) is first straight-
ened (κ1 = 0) and we solve for a temporary value x∗,

x∗ = x0(1−
1
2

κ0x0). (11)

As x∗
x0
≥ 0, the condition for a valid solution of r∗ to exist

is |κ0x0| ≤ 2.
Normal Bending: We then bend the straight spine into C1

and solve for x1 using x∗:

− 1
2

κ1x2
1 + x1 = x∗. (12)

Hence, the closed-form solution for x1 is

x1 =
1−√1−2κ1x∗

κ1
.

In order for x1 to be valid, we have:

κ1x∗ ≤ 1
2
, (13)

and when κ1 reaches this curvature limit, x1 = 2x∗.

Fig. 4 (c) shows the application of Normal Bend to the cylin-
drical tube surfaces in Fig. 4 (a). As shown in the cross-
sectional plot, Mn only slides points in the direction normal
to the osculating plane. Intuitively, the tube surface stretches
towards the inner side and shrinks from the outer side of the
circular spine in order to compensate for local compression
and expansion. When reaching the curvature limit in Eq. 13,
the tube surface starts to intersect itself. Note that Mn has a
more stringent curvature limit than Mr for the same initial
tube surface.

4.3. Binormal Fleshing

During the Binormal Fleshing, we adjust the coordinate from
y0 to y1 while keeping s and x constant. We then solve for y1
under the constraint det(J(Mb)) = 1:

det(J(Mb)) =
(1−κ1x)dy1
(1−κ0x)dy0

.

We set det(J(Mb)) = 1 to obtain,

(1−κ1x)dy1 = (1−κ0x)dy0.

Therefore,

(1−κ1x)y1 = (1−κ0x)y0. (14)

This result shows that y1 is linearly related to y0 with the
coefficient defined by κ0, κ1 and x.

As for the other two Fleshings, we provide here the un-
bend and bend versions.

Binormal Unbending: Let κ1 = 0, y∗ = y1 and we have,

y∗ = (1−κ0x)y0. (15)

In order for y∗ to be valid, we have κ0x≤ 1.
Binormal Bending: Let κ0 = 0, y0 = y∗ and we have,

y1 =
1

1−κ1x
y∗. (16)

In order for y1 to be valid, we have

κ1x < 1. (17)

When κ1 reaches this curvature limit, y1 becomes un-
bounded.

Fig. 4 (d) shows the application of Binormal Bend to the
cylindrical tube surfaces in Fig. 4 (a). As shown in the cross-
sectional plot, MB only allows stratification in the binormal
direction: points on the tube surface expand or shrink bilat-
erally on the inner side or the outer side of the circular spine.
When reaching the curvature limit in Eq. 17, the tube sur-
face becomes flat on the inner side. Note that Mb has the
least stringent curvature limit among the three solutions.

Discussion: Note that Eq. 6, Eq. 10 and Eq. 14 are sym-
metric in the initial and final states of the spine and the space
point. Hence, the mappings are homeomorphisms between
S0 and S1. Fig. 4 presents a qualitative comparison of the
three fleshing solutions by showing their effects on tubular
surfaces: Bi-normal fleshing is closest to what happens when
a tube is bent horizontally a bit too much: the flesh is pushed
vertically up or down (as in the crack of a bent elbow). The
normal fleshing is the reverse: the flesh moves horizontally,
hence it moves more quickly in the direction of the center
of curvature. The radial is a compromise, the flesh moves
radially away or towards the spine.

5. Experiments and Results

This section shows the results of our three fleshing solutions.
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Figure 4: The deformation of two layers of tube surfaces driven by bending a straight spine into a circular arc. We show three
types of fleshing to the original tube surfaces in (b) (c) (d). Each of them shows the transverse (left) and the frontal (right) views
of the bent tubes, and the cross section is dynamically ploted on the top-right. The red tick marks show the mapping trajectories
of points on tube surfaces.

5.1. Extrusion Models

We first present the application of fleshing to models of
solids produced by sweeping a user specified planar cross-
section along a smooth 3D spine curve. To better show the
different effects of our three solutions, we apply them to ex-
trusions along spines that are circular arcs. In the 2D view as
shown in Fig. 5, the user draws a contour and indicates the
point Q = Q0 = Q1 at which the initial and the final spines
are aligned and have the same tangent, but different radii
and osculating planes. The centers of the arcs are specified
by locations O0 and O1. We show the initial cross-section
in blue, then for each fleshing, we show the result of un-
bending in green and in red the result of bending the green
in Fig. 5(b). The vectors O0Q and O1Q define the Frenet
frames and curvatures. We assume here no twist compen-
sation (i.e., θ1 = θ0). Notice that the radial fleshing nearly
preserves straight lines (even though it is not an affine map).
In Fig. 5(c), we show the results in 3D and the corresponding
statistics in Tab. 1.

We compute the exact volumes of the extrusion models in
all cases using the following approach. Let W be the centroid
of a planar region R and let Q be the point passed by the arc
C with length l and center O. Then the volume of the solid S
swept out by R along C is computed as [Foo06],

vol(S) = area(R)ρl

area(R) ρ vol(S) ε
Original 0.278 1.032 1.436 0
Unbend 0.278 1 1.391 -0.031

Bend 0.278 0.982 1.366 -0.049
Radial Unbend 0.287 1 1.436 -1.36E-5

Radial Bend 0.296 0.969 1.436 -3.97E-6
Normal Unbend 0.287 1 1.436 -5.63E-5

Normal Bend 0.298 0.963 1.436 -1.03E-4
Binormal Unbend 0.287 1 1.436 1.17E-4

Binormal Bend 0.293 0.979 1.437 2.83E-4

Table 1: Statistics of the cross-sectional areas, ratios of the
centroid traveled distance to l, solid volumes and their rela-
tive errors for extruded models in Fig. 5(c).

where ρ = OW ·OQ
|OQ|2 is the ratio of the actual distance traveled

by the centroid and l. If C is a line, ρ = 1. We compute the
relative error ε of the solid S as

ε = vol(S1)− vol(S0)

vol(S0)

where Si is the solid swept out by Ri along Ci, i = 0,1. As
shown in Tab. 1, models without fleshing have relatively
large volumetric errors (3%-5%). The other 6 models with
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(a) the cross section of the original solid (blue) and the unbending
and bending directions specified by Q, O1, O2

(b) From left to right, we show the radial, normal and binormal flesh-
ings in two steps: the top row is the unbend images and the bottom
row is the bend images of the top row.

(c) 3D extrusion models correspond to the cross sections in Fig. 5(b)

Figure 5: Fleshing mappings of a extrusion model

fleshing have nearly the same volume with very small (less
than 0.03% ) volumetric errors.

5.2. Quad and Triangle Meshes

We show fleshing applications to general shapes and report
total volume changes of less than 0.3% in real time. Fig. 1
shows bending a triangle mesh, bunny, with a interpolating
spline with control points. As the initial spine (green) de-
forms into the final spine (red), fleshing mappings help pre-
serve the total volume that would otherwise be subjected to a
large change by skinning. Similar to skinning, fleshing pre-
serves smoothness, and hence also sharp features, such as
the bunny’s ears.

Fig. 6 shows bending a genus-2 quad mesh first with a

(a) bending a subdivision mesh (the original volume is 2.1530) with
two axis-aligned circular arcs. The deformed mesh without flesh-
ing (right) is 2.3493.

(b) first bend the red arc: the volumes of the Mr , Mn, Mb mapped
meshes are 2.1526, 2.1527 and 2.1526 from left to right.

(c) then bend the blue arc: the updated volumes are 2.1516, 2.1522
and 2.1508

Figure 6: successively bending a mesh

Figure 7: Two frames in an animation of a dolphin slid-
ing along a 3D curve: by using the radial fleshing, the vol-
ume deviations of the mesh model are 0.12% and 0.08% in
these two positions. In comparison, the volume deviations
are 6.75% and 3.47% without fleshing.

vertical spine into the frontal plane, then with a horizontal
spine out of the frontal plane. Initially, the red and the blue
spines are on the plane that divides S0 into identical halves.
Without the volume-preserving mapping, the volume remain
unchanged after the first bending, but increases by 9% af-
ter the second bending. In comparision, the volume deviates
little (<0.1%) from the orginal one if using fleshing. How-
ever, the binormal stretch (Fig. 6(b) right) causes the mesh to
grow unexpectedly in the horizontal direction. Fig. 7 shows
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Figure 8: From left to right we show the bending results of
skinning, radial, normal and binormal on different levels of a
subdivision mesh. From top to bottom, the number of vertices
are 32, 482, 1922.

Figure 9: Bending a cloud of cubes of uniform size. From
left to right, the original cube sizes are 15, 22, 30.

an application in animation, where a dolphin mesh is slid-
ing along a 3D curve with its orientation and deformation
determined by the curve. Here the curve, C1, represents a
animator-specified path for the digital model to follow. The
path may be curved so that the model may bend. Without
fleshing, this causes unexpected changes of volume perceiv-
able by the viewer. The volume of the digital model is pre-
served by one of our fleshing mappings. As shown in the
figure, the volume deviation is above 5% without fleshing
and reduced to 0.01% with the radial method.

5.3. Resolution and Accuracy

This section discusses the impact of sampling density on
the accuracy of (local) volume preservation implemented by
fleshing. Fig. 8 shows bending a subdivision mesh at differ-
ent resolutions. The increase of the subdivision depth greatly
decrease the relative volume errors of the three fleshing map-
pings (from 2.5% to 0.001%). On the contrary for skin-
ning without fleshing, the ralative volume error increases
slightly (from 12% to 15%). This shows that fleshing map-
pings give accurate total volume-preserving results for high
resolution meshes. In fact, our objective is not only to pre-
serve the total volume, but to preserve the local volume for
each small chunk of the solid. Hence, the proper measure of
volume error that should be used to demonstrate the bene-
fit of fleshing over skinning is to report the average of the

stepSize No Fleshing Radial Normal Binormal
10 0.16391568 0.007769 0.011344 0.009709 0.012537 0.009709
11 0.16104268 0.008581 0.012521 0.01173 0.013543 0.01173
12 0.17180553 0.009269 0.013509 0.012525 0.013896 0.012525
13 0.17711286 0.010072 0.014677 0.013833 0.014675 0.013833
14 0.16543297 0.011069 0.016139 0.015461 0.01618 0.015461
15 0.19188228 0.011709 0.01707 0.016867 0.016867 0.016867
16 0.16689068 0.013717 0.020188 0.018401 0.017642 0.018401
17 0.14844811 0.014907 0.021929 0.020136 0.019001 0.020136
18 0.17323078 0.014418 0.020985 0.022426 0.020775 0.022426
19 0.16631687 0.015433 0.022484 0.025246 0.023102 0.025246
20 0.16045277 0.018381 0.027189 0.026654 0.022781 0.026654
21 0.15982863 0.017441 0.025434 0.029595 0.024802 0.029595
22 0.15165463 0.018705 0.027274 0.031484 0.026099 0.031484
23 0.190617 0.018776 0.027375 0.033684 0.027909 0.033684
24 0.14453015 0.020549 0.029919 0.03663 0.029994 0.03663
25 0.14037292 0.021397 0.031165 0.042434 0.034686 0.042434
26 0.16142121 0.022312 0.032543 0.044136 0.038625 0.044136
27 0.1255257 0.023638 0.034373 0.048513 0.04219 0.048513
28 0.1354426 0.023531 0.034035 0.049913 0.040064 0.051913
29 0.12094624 0.026242 0.038299 0.050291 0.042638 0.055291

0
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0.06

0.07

10 15 20 25
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Normal
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Figure 10: plot of the percentage mean absolute relative er-
ror versus the cube size

volume errors of the small chunks. Fig. 9 shows bending
a cloud of cubes at different sizes. We compute the vol-
ume of each cube deformed by the spine. The relative er-
ror for each cube is computed as ε = (v− v0)/v0. We report
the mean absolute value, εmean, of the relative errors for all
cubes. Fig. 10 shows the plot of εmean versus the cube size.
In general, the relative error scales with the cube size in all
three fleshing mappings. This indicates that fleshing map-
pings give more accurate local volume-preserving results for
deforming a higher resolution volumetric model.

6. Discussion

Fleshing presents three closed-form volume preserving map-
pings, which depends on a proper local parameterization of
the 3D shape along the 1D spine. The spine may have a sim-
ple parametric expression, such as circular or helical arc.
Then the closed-form parameterization along the curve is
easy to obtain. However, this limits the designer’s ability to
bend the spine by manipulating a few control points. If we
represent the spine by a interpolating polynomial, we must
be able to compute the arc-length parameter of the closest
projection of a point onto the spine.

The choice of representation for the spine is orthogonal to
our contribution. Nevertheless, we support two formulations
for the spine C: (1) a low degree, interpolating polynomial,
which we evaluate using Neville’s algorithm, as shown in
Fig. 1, and (2) quintic NUBS, which we evaluate using de
Casteljau’s algorithm, as shown in Fig. 7. Assume that the
approximating polylines are C0 and C1. We sample them so
that they have the same edge length, dl. Again, let Q0 be
the closest projection of X0 on C0. Assume that Q0 is on the
edge C0[k]C0[k+1]:

Q0 =C0[k]+aC0[k]C0[k+1], 0 < a < 1.

The arc-length parameter s of Q0 is s = (k + a)dl. We
use the same arc-length parameter to compute Q1 on C1:
Q1 = C1[k] + aC1[k]C1[k + 1], which is used as the anchor
point for computing X1, as described in the overall fleshing
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transformation. The influence of this polyline approximation
depends on the sampling step size (dl). When dl is not overly
small, decreasing dl improves the precision for locally vol-
ume preservation. However, we found that further increas-
ing the sampling density causes larger error as vertices of
C are not accurate enough due to numerical errors, which
propagate to the normal and curvature evaluation, and to the
overall fleshing transformation. Angular distortion exists in
fleshing mappings due to that the mappings are not confor-
mal. Also, it is not possible to deform B-spline surfaces with
locally volume preservation by applying the mapping only
to its control points as the mappings are not affine. However,
they preserve smoothness, and hence also sharp features. In
fact, the radial fleshing is nearly line preserving, as shown
in Fig. 5(b) (left). The result is guaranteed to be free from
self-crossing (when we are within the validity conditions),
and hence it will not produce new sharp features.

7. Conclusion

We have proposed three formulations for deforming a shape
driven by bending a spine with which the shape is registered.
Our fleshing solutions ensure that the local volume of any
subset of a valid space is preserved during the bending. Fur-
thermore, our solution is based on a closed form mapping
of space and depends neither on the initial shape nor on the
given global coordinate system. Hence the fleshing may be
applied to any shape topology (point cloud, watertight sur-
faces or cell complexes). Furthermore, we extend our ap-
proach to spines that need not be circular, by propagating a
twist compensated local frame and by letting the user or an
application control the bending and twisting. We hope that
the simplicity, accuracy and performance of the proposed
Fleshing approach will make it a standard bending tool for
many modeling and animation applications where local vol-
ume preservation is desired. In the future, we plan to extend
the methods to handle multiple spines.
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